Neural correlates of focused attention in patients with mild Alzheimer’s disease

Abstract

Alzheimer’s Disease (AD) is characterized by an early and significant memory impairment, and progresses to affect other cognitive domains. Impairments in Focused Attention (FA) have been observed in patients diagnosed with mild AD. A functional magnetic resonance imaging (fMRI) Stroop paradigm with verbal responses was used to investigate the neural correlates of FA in AD patients. Twenty-one patients diagnosed with mild AD performed a verbal Stroop—fMRI paradigm. Colour words were printed in an incongruent ink colour. Series 1 consisted of four blocks “Read the word” followed by four blocks “Say the colour of the ink”; Series 2 alternated between the two conditions. Functional data were analyzed using SPM5 to detect anatomical areas with significant signal intensity differences between the conditions. Within-group analyses of the colour minus word contrast yielded significant activation in the following left hemisphere regions: precentral gyrus, inferior frontal gyrus, fusiform gyrus and supplementary motor area (p < 0.05, uncorrected). Relative to cognitively normal older adults who underwent the same experimental task, Stroop performance was significantly worse in AD patients. The fMRI task yielded similar activated brain regions between the two groups. The use of verbal responses in this novel fMRI Stroop task avoids the confusion and memorizing of button locations seen with the manual response modality, allowing the neural correlates of FA to be investigated in AD patients.

Share and Cite:

Bowes, J. , Stroman, P. and Garcia, A. (2012) Neural correlates of focused attention in patients with mild Alzheimer’s disease. World Journal of Neuroscience, 2, 223-230. doi: 10.4236/wjns.2012.24034.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Cummings, J.L. (2004) Alzheimer’s disease. New England Journal of Medicine, 351, 56-67. doi:10.1056/NEJMra040223
[2] Baddeley, A.D., Baddeley, H.A., Bucks, R.S. and Wilcock, G.K. (2001) Attentional control in Alzheimer’s disease. Brain, 124, 1492-1508. doi:10.1093/brain/124.8.1492
[3] Stroop, O.R. (1935). Studies of interference in serial verbal reaction. Journal of Experimental Psychology, 18, 643- 662. doi:10.1037/h0054651
[4] Perry, R.J. and Hodges, J.R. (1999) Attention and executive deficits in Alzheimer’s disease: A critical review. Brain, 122, 383-404. doi:10.1093/brain/122.3.383
[5] Spieler, D., H., Balota, D.A. and Faust, M.E. (1996) Stroop performance in healthy younger and older adults and in individuals with dementia of the Alzheimer’s type. Journal of Experimental Psychology: Human Perception and Performance, 22, 461-479. doi:10.1037/0096-1523.22.2.461
[6] West, R. and Baylis, G.C. (1998) Effects of increased response dominance and contextual disintegration on the stroop interference effect in older adults. Psychology and Aging, 13, 206-217. doi:10.1037/0882-7974.13.2.206
[7] Koss, E., Ober, B.A., Delis, D.C. and Friedland, R.P. (1984) The stroop color-word test: Indicator of dementia severity. International Journal of Neuroscience, 24, 53-61. doi:10.3109/00207458409079534
[8] Fisher, L.M., Freed, D.M. and Corkin, S. (1990) Stroop color-word test performance in patients with Alzheimer’s disease. Journal of Clinical Experimental Neuropsychology, 12, 745-758. doi:10.1080/01688639008401016
[9] Bondi, M.W., Serody, A.B., Chan, A.S., Eberson-Shumate, S.C., Delis, D.C., et al. (2002) Cognitive and neuropathologic correlates of stroop color-word test performance in Alzheimer’s disease. Neuropsychology, 16, 335- 343. doi:10.1037/0894-4105.16.3.335
[10] Kane, M.J. and Engle, R.W. (2003) Working-memory capacity and the control of attention: The contribution of goal neglect, response competition, and task set to stroop interferences. Journal of Experimental Psychology General, 132, 47-70. doi:10.1037/0096-3445.132.1.47
[11] McGuinness, B., Barrett, S.L., Craig, D., Lawson, J. and Passmore, A.P. (2010) Attentional deficits in Alzheimer’s disease and vascular dementia. Journal of Neurology, Neurosurgery, and Psychiatry, 81, 157-159. doi:10.1136/jnnp.2008.164483
[12] Samanez-Larkin, G.R. and D’Esposito, M. (2008) Group comparisons: Imaging the aging brain. Social Cognitive and Affective Neuroscience, 3, 290-297. doi:10.1093/scan/nsn029
[13] Laird, A.R., McMillan, K.M., Lancaster, J.L., Kochunov, P., Turkeltaub, P.E., Pardo, J.V., et al. (2005) A Comparison of label-based review and ale meta-analysis in the Stroop task. Human Brain Mapping, 25, 6-21. doi:10.1002/hbm.20129
[14] Zysset, S., Schroeter, M.L., Neumann, J. and von Cramon, D.Y. (2007) Stroop interference, hemodynamic response and aging: An event-related fMRI study. Neurobiology of Aging, 28, 937-946. doi:10.1016/j.neurobiolaging.2006.05.008
[15] Milham, M.P., Erikson, K.I. Banich, M.T., Kramer, A.F., Webb, A., Wszalek, T. and Cohen, N.J. (2002) Attentional control in the aging brain: Insights from an fMRI study of the Stroop task. Brain and Cognition, 49, 277- 296. doi:10.1006/brcg.2001.1501
[16] Langenecker, S.A., Nielson, K.A. and Rao, S.M. (2004) fMRI of healthy older adults during Stroop interference. NeuroImage, 21, 192-200. doi:10.1016/j.neuroimage.2003.08.027
[17] Bowes, J., Stroman, P., and Garcia, A. (2011) Neural correlates of focused attention in cognitively normal older adults. World Journal of Neuroscience, 1, 19-27. doi:10.4236/wjns.2011.12003
[18] Nasreddine, Z.S., Phillips, N.A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., Cummings, J.L. and Chertkow, H. (2005) The montreal cognitive assessment, MoCA: A brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53, 695-699. doi:10.1111/j.1532-5415.2005.53221.x
[19] American Psychiatric Association (1994). Diagnostic and statistical manual of mental disorders. 4th Edition, American Psychiatric Association, Washington DC.
[20] McKhann, G., Drachmna, D., Folstein, M., Katzman, R., Price, D. and Stadlan, E. (1984) Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA work group under the auspices of department of health and human services task force on Alzheimer’s disease. Neurology, 34, 939-944. doi:10.1212/WNL.34.7.939
[21] Folstein, M., Folstein, S. and McHugh, P.R. (1975) Minimental state: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatry Research, 12, 189-198. doi:10.1016/0022-3956(75)90026-6
[22] Mattis, S. (1988). Dementia Rating Scale. Professional Manual. Psychological Assessment Resources, Odessa.
[23] Friston, K.J., Holmes, A.P., Worsley, K.J., Poline, J.P., Frith, C.D. and Frackowiak, R.S.J. (1994) Statistical parametric maps in functional imaging—A general linear approach. Human Brain Mapping, 2, 189-210. doi:10.1002/hbm.460020402
[24] Rorden, C. and Brett, M. (2000) Stereotaxic display of brain lesions. Behavioural Neurology, 12, 191-200.
[25] Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B. and Joliot, M. (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15, 273-289. doi:10.1006/nimg.2001.0978
[26] Levinoff, E.J., Saumier, D. and Chertkow, H. (2005) Focused attention deficits in patients with Alzheimer’s disease and mild cognitive impairment. Brain and Cognition, 57, 127-130. doi:10.1016/j.bandc.2004.08.058
[27] Fernandez-Duque, D. And Black, S.E. (2008) Selective attention in early dementia of Alzheimer type. Brain and Cognition, 66, 221-231. doi:10.1016/j.bandc.2007.08.003
[28] Banich, M.T., Milham, M.P., Atchley, R., Cohen, N.J., Webb, A., Wszalek, T., et al. (2000). fMRI studies of Stroop tasks reveal unique roles of anterior and posterior brain systems in attentional selection. Journal of Cognitive Neuroscience, 12, 988-1000. doi:10.1162/08989290051137521
[29] Banich, M.T., Milham, M.P., Jacobson, B.L., Webb, A., Wszalek, T., Cohen, N.J., et al. (2001). Attentional selection and the processing of task-irrelevant information: Insights from fMRI examinations of the Stroop task. In Casanova, C. and Pt Ptito, M., Eds., Vision: From Neurons to Cognition, Elsevier Science, Amsterdam, 459- 470. doi:10.1016/S0079-6123(01)34030-X
[30] Taylor, S.F., Korblum, S., Lauber, E.J., Minoshima, S. and Koeppe, R.A. (1997) Isolation of specific interference processing in the Stroop task: PET activation studies. NeuroImage, 6, 81-92. doi:10.1006/nimg.1997.0285
[31] Mead, L.A., Mayer, A.R., Bobholz, J.A., Woodley, S.J., Cunningham, J.M., Hammeke, T.A., et al. (2002). Neural basis of the Stroop interference task: Response com- petition or selective attention. Journal of International Neuropsychological Society, 8, 735-742. doi:10.1017/S1355617702860015

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.