High Performance Oil Resistant Rubber

Abstract

Blending of polymers has gained much interest due to the fact that, it can be used to produce new polymeric materials with specific properties suitable for some special applications. The blends from acrylonitrile butadiene rubber (NBR), chloroprene rubber (CR) and polyvinyl chloride (PVC) has been designed for products working in contact with oils. The characteristics of the designed blends either binary blends (NBR/PVC or PVC/CR) or ternary blends (NBR/ PVC/CR) were investigated by rheological properties, mechanical analysis and swelling in oil and toluene. It was found that the incorporation of PVC in the blend compositions leads to the decrease in degree of swelling, the penetration rate and the average diffusion coefficient. On the other hand the ultimate tensile strength (UTS), the hardness and strain energy were increased. This was attributed to the plastic nature of PVC, beside its additional behavior as filler. The crosslinking density in the blend vulcanizates under investigations was determined by Flory-Rehner and Mooney-Rivlin [Stress/Strain] equations. The higher values of crosslinking density determined by Mooney-Rivlin can be attributed to the additional physical crosslinks (e.g. entanglements etc), beside the chemical crosslinks determined by swelling in toluene. This study showed that NBR/PVC blends are characterized with high performance oil resistant, which can be recommended to automotive industry.

Share and Cite:

A. Khalaf, A. Yehia, M. Ismail and H. El-Sabbagh, "High Performance Oil Resistant Rubber," Open Journal of Organic Polymer Materials, Vol. 2 No. 4, 2012, pp. 89-94. doi: 10.4236/ojopm.2012.24013.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] K. R. Habeab, G. Unnikrishnan, A. Sujith and C. K. Radhakrishnan, “Cure Characteristics and Mechanical Properties of Styrene-Butadiene Rubber/Acrylonitrile Butadiene Rubber,” Materials Letters, Vol. 59, No. 6, 2005, pp. 633-639. doi:10.1016/j.matlet.2004.10.050
[2] B. M. Walker and C. P. Rader, “Handbook of Thermoplastic Elastomer,” Van Nostrand Reinhold, New York, 1988. doi:10.1007/978-1-4613-1671-8
[3] A. Mousa, U. S. Iskiaku and Z. A. Mohd Ishak, “The Effect of Prolonged Thermo-Oxidative Ageing on the Mechanical Properties of Dynamically Vulcanized Poly(Vinyl Chloride)/Nitrile Butadiene Rubber Thermoplastic Elastomers,” International Journal of polymeric materials, Vol. 55, No. 4, 2005, pp. 235-253. doi:10.1080/009140390927303
[4] A. H. Mazumdar and M. S. Majumdar, “Rubber Handbook,” Synthetics and Chemicals Ltd., Bomboy, 1983.
[5] S. Krause, In: D. R. Paul and S. Newman, Eds., Polymer Blends, Academic press, New york, 1978.
[6] E. Wimolmala, J. Woothikanokkhan and N. sombatsompop, “Effects of Composition and Temperature on Extrudate Characteristics, Morphology, and Tensile Properties of Acrylic Rubber-Blended PVC,” Journal of Applied Polymer Science, Vol. 80, No. 13, 2001, pp. 2523-2534. doi:10.1002/app.1361
[7] S. Saha, “Rheological and Morphological Characteristics of Polyvinylchloride/Polychloroprene Blends–– Effect of Temperature and Mixing Speed,” European Polymer Journal, Vol. 37, No. 2, 2001, pp. 399-410. doi:10.1016/S0014-3057(00)00019-7
[8] J. R. Fried, “Polymer Science and Technology,” Prentice Hall, Upper Saddle River, 1995.
[9] H. Ismail and A. M. M. Yusof Supri, “Blend of Waste Poly(vinylchloride) (PVCw)/acrylonitrile Butadiene-Rubber (NBR): The Effect of Maleic Anhydride (MAH),” Polymer Testing, Vol. 23, No. 6, 2004, pp. 675-683. doi:10.1016/j.polymertesting.2004.01.008
[10] K. E. Goorge, “Blends and Alloys,” Chapman and Hall, London, 1993.
[11] A. M. Omran, A. M. Youssef, M. M. Ahmed and E. M. Abdel Bary, Kautch Gummi Kunst, Vol. 6, 2010, pp. 197-202.
[12] P. P. Flory, “Principles of Polymer Chemistry,” Cornell university, Ithaca, 1953.
[13] M. N. Ismail and A. I. Khalaf, “Styrene-Butadiene Rubber/Graphite Powder Composites: Rheometrical, Physicomechanical, and Morphological Properties,” Journal of Applied Polymer Science, Vol. 120, No. 1, 2011, pp. 298-304. doi:10.1002/app.33101
[14] R. S. Rivlin and A. G. Thomas, “Rupture of Rubber. I. Characteristic Energy for Tearing,” Journal of Polymer Science, Vol. 10, No. 3, 1953, pp. 291-318. doi:10.1002/pol.1953.120100303
[15] G. A. Zhang, M. L. Zhou, J. H. Ma and B. R. Liang, “Preparation and Swelling Properties of Solution Crosslinked Poly(cis-1,4-butadiene) Gels,” J. Appl. Polym. Sci., Vol. 90, 2003, pp. 2241-. doi:10.1002/app.12888
[16] A. Mousa, U. S. Ishiaku and Z. A. Mohd Ishak, Polymer Bulletin, Vol. 53, 2005, pp. 203 (2005). doi:10.1007/s00289-004-0325-6
[17] Biing-Lin Lee Polymer Engineering and Science, 22, 902 (1982).
[18] Shokri, A. A., Bakhshandeh G., and Farahani, T. D., Irainan Polymer Journal,15, 227(2006).
[19] Abdul Kader, M. and Bhowmick A.K., Polym. Degrd. Stab. 79,283 (2003). doi:10.1016/S0141-3910(02)00292-6
[20] Mattew, F. Myntti, Rubber world, 228, 38 (2003).
[21] Norman, N.Z., Ismail, H., and Rashid, A.A., Polymer Testing 29,200(2010). doi:10.1016/j.polymertesting.2009.11.002
[22] Hamza, S. S., El-Sabbagh, S.,and shokr F., International Journal of Polymeric Materials, 57,203(2008). doi:10.1080/00914030701413330
[23] Rivlin, R. S., Rubber Chem. Technol.65:G51 (1992). doi:10.5254/1.3538628
[24] Aprem, A. S. and Thomas, S., Journal of Elastomer and plastics.35, 29 (2003).
[25] Campbell, D. S. and Chapman. A. V. J. Nat. Rubber Res., 5,246(1990).

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.