Distinct Subcellular Localization of GSK-3β in Melanocytic Nevi: Implications in Melanocyte Senescence

Abstract

Melanocytic nevi are a transient in vivo proliferation of melanocytes that after time undergo cellular senescence. Most nevi harbor B-Raf mutations, which appear to activate cellular mechanisms of senescence in melanocytes. Glycogen synthase kinase 3β (GSK-3β), a critical downstream effector of the AKT signaling pathway, is involved in the development of melanoma and has been associated with senescence in melanocytes. Our immunohistochemical and immunofluorescence studies revealed distinct, perinuclear, dot-like reactivity of GSK-3β in melanocytic nevi. Furthermore, our tissue microarray analysis demonstrated significant perinuclear dot-like sublocalization of GSK-3β in melanocytic nevi compared with the amount of GSK-3β observed in melanoma (P < 0.0019). In summary, the subcellular localization of GSK-3β in human nevi may contribute to senescence in melanocytes.

Share and Cite:

J. L. Curry, C. A. Torres-Cabala, C. L. Warneke, P. Zhang and V. G. Prieto, "Distinct Subcellular Localization of GSK-3β in Melanocytic Nevi: Implications in Melanocyte Senescence," Open Journal of Pathology, Vol. 2 No. 4, 2012, pp. 113-119. doi: 10.4236/ojpathology.2012.24021.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu and M. J. Thun, “Cancer Statistics,” Cancer Journal for Clinicians, Vol. 59, No. 4, 2009, pp. 225-249. doi:10.3322/caac.20006
[2] D. S. Rigel, “Epidemiology of Melanoma,” Seminars in Cutaneous Medicine and Surgery, Vol. 29, No. 4, 2010, pp. 204-209. doi:10.1016/j.sder.2010.10.005
[3] H. Tsao, M. B. Atkins and A. J. Sober, “Management of Cutaneous Melanoma,” New England Journal of Medicine, Vol. 351, 2004, pp. 998-1012. doi:10.1056/NEJMra041245
[4] N. R. Abbasi, H. M. Shaw, D. S. Rigel, R. J. Friedman, W. H. McCarthy, I. Osman, A. W. Kopf and D. Polsky, “Early Diagnosis of Cutaneous Melanoma: Revisiting the ABCD Criteria,” JAMA, Vol. 292, No. 22, 2004, pp. 2771-2776. doi:10.1001/jama.292.22.2771
[5] D. S. Rigel, R. J. Friedman, A. W. Kopf and D. Polsky, “ABCDE—An Evolving Concept in the Early Detection of Melanoma,” Archives of Dermatology, Vol. 141, No. 8, 2005, pp. 1032-1034. doi:10.1001/archderm.141.8.1032
[6] S. Paradela, E. Fonseca and V. G. Prieto, “Melanoma in Children,” Archives of Pathology & Laboratory Medicine, Vol. 135, No. 3, 2011, pp. 307-316.
[7] J. A. Curtin, J. Fridlyand, T. Kageshita, H. N. Patel, K. J. Busam, H. Kutzner, K. H. Cho, S. Aiba, E. B. Brocker, P. E. LeBoit, D. Pinkel and B. C. Bastian, “Distinct Sets of Genetic Alterations in Melanoma,” New England Journal of Medicine, Vol. 353, No. 20, 2005, pp. 2135-2147. doi:10.1056/NEJMoa050092
[8] NIH Consensus Conference, “Diagnosis and Treatment of Early Melanoma,” JAMA, Vol. 268, No. 10, 1992, pp. 1314-1319. doi:10.1001/jama.1992.03490100112037
[9] K. M. Heaton, J. J. Sussman, J. E. Gershenwald, J. E. Lee, D. S. Reintgen, P. F. Mansfield and M. I. Ross, “Surgical Margins and Prognostic Factors in Patients with Thick (>4 mm) Primary Melanoma,” Annals of Surgical Oncology, Vol. 5, No. 4, 1998, pp. 322-328. doi:10.1007/BF02303495
[10] P. Gillgren, K. T. Drzewiecki, M. Niin, H. P. Gullestad, H. Hellborg, E. Mansson-Brahme, C. Ingvar and U. Ringborg, “2-cm versus 4-cm Surgical Excision Margins for Primary Cutaneous Melanoma Thicker than 2 mm: A Randomised, Multicentre Trial,” Lancet, Vol. 378, No. 9803, 2011, pp. 1635-1642. doi:10.1016/S0140-6736(11)61546-8
[11] G. M. Boland and J. E. Gershenwald, “Sentinel Lymph Node Biopsy in Melanoma,” Cancer Journal, Vol. 18, No. 2, 2012, pp. 185-191. doi:10.1097/PPO.0b013e31825046c7
[12] P. B. Chapman, A. Hauschild, C. Robert, J. B. Haanen, P. Ascierto, J. Larkin, R. Dummer, C. Garbe, A. Testori, M. Maio, D. Hogg, P. Lorigan, C. Lebbe, T. Jouary, D. Schadendorf, A. Ribas, S. J. O’Day, J. A. Sosman, J. M. Kirkwood, A. M. Eggermont, B. Dreno, K. Nolop, J. Li, B. Nelson, J. Hou, R. J. Lee, K. T. Flaherty and G. A. McArthur, “Improved Survival with Vemurafenib in Melanoma with BRAF V600E Mutation,” New England Journal of Medicine, Vol. 364, No. 26, 2011, pp. 2507-2516. doi:10.1056/NEJMoa1103782
[13] S. Krengel, “Nevogenesis—New Thoughts Regarding a Classical Problem,” American Journal of Dermatopathology, Vol. 27, No. 5, 2005, pp. 456-465. doi:10.1097/01.dad.0000175532.27368.3f
[14] J. V. Schaffer, “Pigmented Lesions in Children: When to Worry,” Current Opinion in Pediatrics, Vol. 19, No. 4, 2007, pp. 430-440. doi:10.1097/MOP.0b013e32825b0788
[15] C. Michaloglou, L. C. Vredeveld, M. S. Soengas, C. Denoyelle, T. Kuilman, C. M. van der Horst, D. M. Majoor, J. W. Shay, W. J. Mooi and D. S. Peeper, “BRAFE600-Associated Senescence-Like Cell Cycle Arrest of Human Naevi,” Nature, Vol. 436, 2005, pp. 720-724. doi:10.1038/nature03890
[16] P. M. Pollock, U. L. Harper, K. S. Hansen, L. M. Yudt, M. Stark, C. M. Robbins, T. Y. Moses, G. Hostetter, U. Wagner, J. Kakareka, G. Salem, T. Pohida, P. Heenan, P. Duray, O. Kallioniemi, N. K. Hayward, J. M. Trent and P. S. Meltzer, “High Frequency of BRAF Mutations in Nevi,” Nature Genetics, Vol. 33, No. 1, 2003, pp. 19-20. doi:10.1038/ng1054
[17] V. C. Gray-Schopfer, S. C. Cheong, H. Chong, J. Chow, T. Moss, Z. A. Abdel-Malek, R. Marais, D. Wynford-Thomas and D. C. Bennett, “Cellular Senescence in Naevi and Immortalisation in Melanoma: A Role for p16?” British Journal of Cancer, Vol. 95, No. 4, 2006, pp. 496-505. doi:10.1038/sj.bjc.6603283
[18] J. L. Curry, H. W. Richards, Y. T. Huttenbach, E. E. Medrano and J. A. Reed, “Different Expression Patterns of p27 and p57 Proteins in Benign and Malignant Melanocytic Neoplasms and in Cultured Human Melanocytes,” Journal of Cutaneous Pathology, Vol. 36, No. 2, 2009, pp. 197-205. doi:10.1111/j.1600-0560.2008.00998.x
[19] N. Embi, D. B. Rylatt and P. Cohen, “Glycogen Synthase Kinase-3 from Rabbit Skeletal Muscle. Separation from Cyclic-AMP-Dependent Protein Kinase and Phosphorylase Kinase,” European Journal of Biochemistry, Vol. 107, No. 2, 1980, pp. 519-527. doi:10.1111/j.1432-1033.1980.tb06059.x
[20] P. Cohen and S. Frame, “The renaissance of GSK3,” Nature Reviews Molecular Cell Biology, Vol. 2, 2001, pp. 769-776. doi:10.1038/35096075
[21] B. W. Doble and J. R. Woodgett, “GSK-3: Tricks of the Trade for a Multi-Tasking Kinase,” Journal of Cell Science, Vol. 116, No. 7, 2003, pp. 1175-1186. doi:10.1242/jcs.00384
[22] K. P. Hoeflich, J. Luo, E. A. Rubie, M. S. Tsao, O. Jin and J. R. Woodgett, “Requirement for Glycogen Synthase Kinase-3beta in Cell Survival and NF-kappaB Activation,” Nature, Vol. 406, No. 6791, 2000, pp. 86-90. doi:10.1038/35017574
[23] Y. H. Seo, H. J. Jung, H. T. Shin, Y. M. Kim, H. Yim, H. Y. Chung, I. K. Lim and G. Yoon, “Enhanced Glycogenesis Is Involved in Cellular Senescence via GSK3/GS Modulation,” Aging Cell, Vol. 7, No. 6, 2008, pp. 894-907. doi:10.1111/j.1474-9726.2008.00436.x
[24] B. Bellei, E. Flori, E. Izzo, V. Maresca and M. Picardo, “GSK3beta Inhibition Promotes Melanogenesis in Mouse B16 Melanoma Cells and Normal Human Melanocytes,” Cellular Signaling, Vol. 20, No. 10, 2008, pp. 1750-1761. doi:10.1016/j.cellsig.2008.06.001
[25] F. G. Haluska, H. Tsao, H. Wu, F. S. Haluska, A. Lazar and V. Goel, “Genetic Alterations in Signaling Pathways in Melanoma,” Clinical Cancer Research, Vol. 12, No. 7, 2006, pp. 2301s-2307s. doi:10.1158/1078-0432.CCR-05-2518
[26] M. A. Davies, K. Stemke-Hale, C. Tellez, T. L. Calderone, W. Deng, V. G. Prieto, A. J. Lazar, J. E. Gershenwald and G. B. Mills, “A Novel AKT3 Mutation in Melanoma Tumours and Cell Lines,” British Journal of Cancer, Vol. 99, No. 8, 2008, pp. 1265-1268. doi:10.1038/sj.bjc.6604637
[27] B. Govindarajan, J. E. Sligh, B. J. Vincent, M. Li, J. A. Canter, B. J. Nickoloff, R. J. Rodenburg, J. A. Smeitink, L. Oberley, Y. Zhang, J. Slingerland, R. S. Arnold, J. D. Lambeth, C. Cohen, L. Hilenski, K. Griendling, M. Martinez-Diez, J. M. Cuezva and J. L. Arbiser, “Overexpression of Akt Converts Radial Growth Melanoma to Vertical Growth Melanoma,” The Journal of Clinical Investigation, Vol. 117, No. 3, 2007, pp. 719-729. doi:10.1172/JCI30102
[28] D. L. Dai, M. Martinka and G. Li, “Prognostic Significance of Activated Akt Expression in Melanoma: A Clinicopathologic Study of 292 Cases,” Journal of Clinical Oncology, Vol. 23, No. 7, 2005, pp. 1473-1482. doi:10.1200/JCO.2005.07.168
[29] V. G. Prieto, A. A. Mourad-Zeidan, V. Melnikova, M. M. Johnson, A. Lopez, A. H. Diwan, A. J. Lazar, S. S. Shen, P. S. Zhang, J. A. Reed, J. E. Gershenwald, A. Raz and M. Bar-Eli, “Galectin-3 Expression Is Associated with Tumor Progression and Pattern of Sun Exposure in Melanoma,” Clinical Cancer Research, Vol. 12, No. 22, 2006, pp. 6709-6715. doi:10.1158/1078-0432.CCR-06-0758
[30] J. W. Zmijewski and R. S. Jope, “Nuclear Accumulation of Glycogen Synthase Kinase-3 during Replicative Senescence of Human Fibroblasts,” Aging Cell, Vol. 3, 2004, pp. 309-317. doi:10.1111/j.1474-9728.2004.00117.x
[31] D. M. Ferkey and D. Kimelman, “GSK-3: New Thoughts on an Old Enzyme,” Developmental Biology, Vol. 225, No. 2, 2000, pp. 471-479. doi:10.1006/dbio.2000.9816
[32] G. N. Bijur and R. S. Jope, “Rapid Accumulation of Akt in Mitochondria Following Phosphatidylinositol 3-Kinase Activation,” Journal of Neurochemistry, Vol. 87, No. 6, 2003, pp. 1427-1435. doi:10.1046/j.1471-4159.2003.02113.x
[33] C. Sutherland, I. A. Leighton and P. Cohen, “Inactivation of Glycogen Synthase Kinase-3 Beta by Phosphorylation: New Kinase Connections in Insulin and Growth-Factor Signaling,” Biochemical Journal, Vol. 296, Pt. 1, 1993, pp. 15-19.
[34] D. M. Ferkey and D. Kimelman, “Glycogen Synthase Kinase-3 Beta Mutagenesis Identifies a Common Binding Domain for GBP and Axin,” Journal of Biological Chemistry, Vol. 277, No. 18, 2002, pp. 16147-16152. doi:10.1074/jbc.M112363200
[35] S. R. Datta, A. Brunet and M. E. Greenberg, “Cellular Survival: A Play in Three Akts,” Genes & Development, Vol. 13, 1999, pp. 2905-2927. doi:10.1101/gad.13.22.2905
[36] S. J. Lee, Y. H. Chung, K. M. Joo, H. C. Lim, G. S. Jeon, D. Kim, W. B. Lee, Y. S. Kim and C. I. Cha, “Age-Related Changes in Glycogen Synthase Kinase 3beta (GSK3beta) Immunoreactivity in the Central Nervous System of Rats,” Neuroscience Letters, Vol. 409, No. 2, 2006, pp. 134-139. doi:10.1016/j.neulet.2006.09.026
[37] S. Frame and P. Cohen, “GSK3 Takes Centre Stage More than 20 Years after Its Discovery,” Biochemical Journal, Vol. 359, No. 1, 2001, pp. 1-16. doi:10.1042/0264-6021:3590001

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.