Increased survivin expression contributes to apoptosis-resistance in IPF fibroblasts

Abstract

Fibroblasts perform critical functions during the normal host response to tissue injury, but the inappropriate accumulation and persistent activation of these cells results in the development of tissue fibrosis. The mechanisms accounting for the aberrant accumulation of fibroblasts during fibrotic repair are poorly understood, although evidence supports a role for fibroblast resistance to apoptosis as a contributing factor. We have shown that TGF-β1 and endothelin-1 (ET-1), soluble mediators implicated in fibrogenesis, promote fibroblast resistance to apoptosis. Moreover, we recently found that ET-1 induced apoptosis resistance in normal lung fibroblasts through the upregulation of survivin, a member of the Inhibitor of Apoptosis (IAP) protein family. In the current study, we sought to determine the role of survivin in the apoptosis resistance of primary fibroblasts isolated from the lungs of patients with Idiopathic Pulmonary Fibrosis (IPF), a fibrotic lung disease of unclear etiology for which there is no definitive therapy. First, we examined survivin expression in lung tissue from patients with IPF and found that there is robust expression in the fibroblasts residing within fibroblastic foci (the “active” lesions in IPF which correlate with mortality). Next, we show that survivin expression is increased in fibroblasts isolated from IPF lung tissue compared to cells from normal lung tissue. Consistent with a role in fibrogenesis, we demonstrate that TGF-β1 increases survivin expression in normal lung fibroblasts. Finally, we show that inhibition of survivin enhances susceptibility of a subset of IPF fibroblasts to apoptosis. Collectively, these findings suggest that increased survivin expression represents one mechanism contributing an apoptosis-resistant phenotype in IPF fibroblasts.

Share and Cite:

Sisson, T. , Maher, T. , Ajayi, I. , King, J. , Higgins, P. , Booth, A. , Sagana, R. , Huang, S. , White, E. , Moore, B. and Horowitz, J. (2012) Increased survivin expression contributes to apoptosis-resistance in IPF fibroblasts. Advances in Bioscience and Biotechnology, 3, 657-664. doi: 10.4236/abb.2012.326085.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Collard, H.R., et al. (2012) Burden of illness in idiopathic pulmonary fibrosis. Journal of Medical Economics, 15, 829-835. doi:10.3111/13696998.2012.680553
[2] Raghu, G., et al. (2011) An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: Evidence-based guidelines for diagnosis and management. American Journal of Respiratory and Critical Care Medicine, 183, 788-824. doi:10.1164/rccm.2009-040GL
[3] Navaratnam, V., et al. (2011) The rising incidence of idiopathic pulmonary fibrosis in the UK. Thorax, 66, 462-467. doi:10.1136/thx.2010.148031
[4] Maher, T.M. (2012) Idiopathic pulmonary fibrosis: Pathobiology of novel ap-proaches to treatment. Clinics in Chest Medicine, 33, 69-83. doi:10.1016/j.ccm.2011.11.002
[5] Ley, B., Collard, H.R. and King Jr., T.E. (2011) Clinical course and pre-diction of survival in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Med-icine, 183, 431-440. doi:10.1164/rccm.201006-0894CI
[6] Ding, Q., et al. (2011) New insights into the pathogenesis and treatment of idiopathic pulmonary fibrosis. Drugs, 71, 981-1001. doi:10.2165/11591490-000000000-00000
[7] King Jr., T.E., Pardo, A. and Selman, M. (2011) Idiopathic pul-monary fibrosis. Lancet, 378, 1949-1961. doi:10.1016/S0140-6736(11)60052-4
[8] Horowitz, J.C. and Thannickal, V.J. (2006) Idiopathic pulmonary fibrosis: New concepts in pathogenesis and implications for drug therapy. Treatments in Respiratory Medicine, 5, 325-342. doi:10.2165/00151829-200605050-00004
[9] Desmouliere, A., Chaponnier, C. and Gabbiani, G. (2005) Tissue repair, contraction, and the myofibroblast. Wound Repair and Regeneration, 13, 7-12. doi:10.1111/j.1067-1927.2005.130102.x
[10] Hinz, B., et al. (2012) Recent developments in myofibroblast biology: Paradigms for connective tissue remodeling. American Journal of Pathology, 180, 1340-1355. doi:10.1016/j.ajpath.2012.02.004
[11] Laurent, G.J., et al. (2008) Escape from the matrix: Multiple mechanisms for fibroblast activation in pulmonary fibrosis. Proceedings of the American Thoracic Society, 5, 311-315. doi:10.1513/pats.200710-159DR
[12] Desmouliere, A., et al. (1995) Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. American Journal of Pathology, 146, 56-66.
[13] Tomasek, J.J., et al. (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nature Reviews Molecular Cell Biolog, 3, 349-363. doi:10.1038/nrm809
[14] Thannickal, V.J. and Horowitz, J.C. (2006) Evolving concepts of apoptosis in idiopathic pulmonary fibrosis. Proceedings of the American Thoracic Society, 3, 350- 356. doi:10.1513/pats.200601-001TK
[15] Cha, S.I., et al. (2010) Compartmentalized expression of c-FLIP in lung tissues of patients with idiopathic pulmonary fibrosis. American Journal of Respiratory Cell and Molecular Bi-ology, 42, 140-148. doi:10.1165/rcmb.2008-0419OC
[16] Lepparanta, O., et al. (2010) Transcription factor GATA- 6 is expressed in quiescent myofibroblasts in idiopathic pulmonary fibrosis. American Journal of Respiratory Cell and Molecular Bi-ology, 42, 626-632. doi:10.1165/rcmb.2009-0021OC
[17] Korfei, M., et al. (2008) Epithelial endoplasmic reticulum stress and apop-tosis in sporadic idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine, 178, 838-846. doi:10.1164/rccm.200802-313OC
[18] Maher, T.M., et al. (2010) Diminished prostaglandin E2 contributes to the apoptosis paradox in idiopathic pulmo- nary fibrosis. American Journal of Respiratory and Cri- tical Care Medicine, 182, 73-82. doi:10.1164/rccm.200905-0674OC
[19] Buhling, F., et al. (2005) Altered expression of mem- brane-bound and soluble CD95/Fas contributes to the re- sistance of fibrotic lung fibroblasts to FasL induced apoptosis. Respiratory Research, 6, 37. doi:10.1186/1465-9921-6-37
[20] Horowitz, J.C., et al. (2012) Survivin expression induced by endothelin-1 promotes myofibroblast resistance to apoptosis. Interna-tional Journal of Biochemistry & Cell Biology, 44, 158-169. doi:10.1016/j.biocel.2011.10.011
[21] Horowitz, J.C., et al. (2006) Constitutive activation of prosurvival signaling in alveolar mesenchymal cells isolated from patients with nonresolving acute respiratory distress syndrome. American Journal of Physiology— Lung Cellular and Molecular Physiology, 290, L415- L425. doi:10.1152/ajplung.00276.2005
[22] Horowitz, J.C., et al. (2004) Activation of the pro-sur- vival phosphatidyli-nositol 3-kinase/AKT pathway by transforming growth factor-beta1 in mesenchymal cells is mediated by p38 MAPK-dependent induction of an autocrine growth factor. Journal of Biological Chemistry, 279, 1359-1367. doi:10.1074/jbc.M306248200
[23] Horowitz, J.C., et al. (2007) Combinatorial activation of FAK and AKT by transforming growth factor-beta1 con- fers an anoi-kis-resistant phenotype to myofibroblasts. Cell Signal, 19, 761-771. doi:10.1016/j.cellsig.2006.10.001
[24] Huang, S.K., et al. (2009) Prostaglandin E(2) induces fibroblast apoptosis by modulating multiple survival pathways. FASEB Journal, 23, 4317-4326. doi:10.1096/fj.08-128801
[25] Xia, H., et al. (2004) Focal adhesion kinase is upstream of phosphatidylinositol 3-kinase/Akt in regulating fibro- blast survival in response to contraction of type I collagen matrices via a beta 1 integrin viability signaling pathway. Journal of Biological Chemistry, 279, 33024-33034. doi:10.1074/jbc.M313265200
[26] Rumble, J.M. and Duckett, C.S. (2008) Diverse functions within the IAP family. Journal of Cell Science, 121, 3505-3507. doi:10.1242/jcs.040303
[27] Sah, N.K., et al. (2006) Structural, functional and therapeutic biology of survivin. Cancer Letters, 244, 164-171. doi:10.1016/j.canlet.2006.03.007
[28] Altieri, D.C. (2010) Survivin and IAP proteins in cell- death mechanisms. Biochemical Journal, 430, 199-205. doi:10.1042/BJ20100814
[29] Guha, M. and Altieri, D.C. (2009) Survivin as a global target of intrinsic tumor sup-pression networks. Cell Cycle, 8, 2708-2710. doi:10.4161/cc.8.17.9457
[30] Altieri, D.C. (2008) New wirings in the survivin networks. Oncogene, 27, 6276-6284. doi:10.1038/onc.2008.303
[31] White, E.S., et al. (2003) Integrin alpha4beta1 regulates migration across basement membranes by lung fibroblasts: a role for phosphatase and tensin homologue deleted on chro-mosome 10. American Journal of Respiratory and Critical Care Medicine, 168, 436-442. doi:10.1164/rccm.200301-041OC
[32] Oikawa, T., et al. (2010) Identification of a small-mole- cule inhibitor of the interaction between Survivin and Smac/DIABLO. Biochemical and Biophysical Research Communications, 393, 253-258. doi:10.1016/j.bbrc.2010.01.113
[33] Ryan, B.M., O’Donovan, N. and Duffy, M.J. (2009) Survivin: A new target for anti-cancer therapy. Cancer Treatment Reviews, 35, 553-562. doi:10.1016/j.ctrv.2009.05.003
[34] Kulasekaran, P., et al. (2009) Endothelin-1 and trans- forming growth fac-tor-beta1 independently induce fibroblast resistance to apoptosis via AKT activation. American Journal of Res-piratory Cell and Molecular Biology, 41, 484-493. doi:10.1165/rcmb.2008-0447OC
[35] Frankel, S.K., et al. (2006) TNF-alpha sensitizes normal and fibrotic human lung fibroblasts to Fas-induced apoptosis. American Journal of Respiratory Cell and Molecular Biology, 34, 293-304. doi:10.1165/rcmb.2005-0155OC
[36] Huang, S.K., et al. (2008) Variable prostaglandin E2 resistance in fibroblasts from patients with usual interstitial pneumonia. American Journal of Respiratory and Critical Care Medicine, 177, 66-74. doi:10.1164/rccm.200706-963OC
[37] Andersen, M.H., et al. (2007) The universal character of the tu-mor-associated antigen survivin. Clinical Cancer Research, 13, 5991-5994. doi:10.1158/1078-0432.CCR-07-0686
[38] Kelly, R.J., et al. (2011) Impacting tumor cell-fate by targeting the inhibitor of apoptosis protein survivin. Mo- lecular Cancer, 10, 35. doi:10.1186/1476-4598-10-35
[39] Pavlyukov, M.S., et al. (2011) Survivin monomer plays an essential role in apoptosis regulation. Journal of Biological Chemistry, 286, 23296-23307. doi:10.1074/jbc.M111.237586
[40] Nakahara, T., et al. (2011) YM155, a novel survivin sup- pressant, enhances taxane-induced apoptosis and tumor regression in a human Calu 6 lung cancer xenograft model. Anticancer Drugs, 22, 454-462. doi:10.1097/CAD.0b013e328344ac68
[41] Anandharaj, A., Cinghu, S. and Park, W.Y. (2011) Ra- pamy-cin-mediated mTOR inhibition attenuates survivin and sensitizes glioblastoma cells to radiation therapy. Acta Biochim Biophys Sin (Shanghai) 43, 292-300 DOI: gmr012 [pii]10.1093/abbs/gmr012.
[42] Hideshima, T., et al. (2007) Inhibition of Akt induces significant down-regulation of survivin and cytotoxicity in human multiple myeloma cells. British Journal of Haematology, 138, 783-791. doi:10.1111/j.1365-2141.2007.06714.x
[43] Kang, H.R., et al. (2007) Semaphorin 7A plays a critical role in TGF-beta1-induced pulmonary fibrosis. Journal of Expe-rimental Medicine, 204, 1083-1093. doi:10.1084/jem.20061273
[44] Le Cras, T.D., et al. (2010) Inhibition of PI3K by PX-866 prevents trans-forming growth factor-alpha-induced pul- monary fibrosis. American Journal of Pathology, 176, 679-686. doi:10.2353/ajpath.2010.090123
[45] Marsillach, J., et al. (2008) Changes in the expression of genes related to apoptosis and fibrosis pathways in CCl4-treated rats. Molecular and Cellular Biochemistry, 308, 101-109. doi:10.1007/s11010-007-9617-0

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.