Temperature Dependence of the Raman Intensity and the Bandwidth Close to the Order-Disorder Phase Transition in NaNO3

Abstract

We analyze the temperature dependence of the Raman intensity using the experimental data according to a power-law formula close to the order-disorder transition (Tc = 549 K) in NaNO 3. From this analysis, we extract the value of β = 0.26 as the critical exponent for the order parameter, which indicates a tricritical phase transition in this crystalline system. Using the temperature dependence of the order parameter, the Raman bandwidth is calculated at various temperatures in NaNO3. Our calculated bandwidths describe adequately the observed behaviour of the order-disorder transition in this crystal.

Share and Cite:

H. Yurtseven and S. Aslan, "Temperature Dependence of the Raman Intensity and the Bandwidth Close to the Order-Disorder Phase Transition in NaNO3," Optics and Photonics Journal, Vol. 2 No. 3A, 2012, pp. 249-253. doi: 10.4236/opj.2012.223038.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] F. C. Kracek, E. Posnjak and S. B. Hendricks, “Gradual transition in sodium nitrate II. The structure at various temperatures and its bearing on molecular rotation,” Journal of American Chemical Society, Vol. 53, 1931, pp. 3339-3348. doi:10.1021/ja01360a016
[2] R. J. Reeder, S. A. T. Redfern and E. Salje, “Spontaneous strain at the structural phase transition in NaNO3,” Physics and Chemistry of Minerals, Vol. 15, 1988, pp. 605-611. doi:10.1007/BF00311033
[3] Y. Takeuchi and Y. Sasaki, “Elastic properties and thermal expansion of NaNO3 single crystal,” Journal of Physical Society of Japan, Vol. 61, 1992, pp. 587-595. doi:10.1143/JPSJ.61.587
[4] Y. Shinnaka, “Anion rotational disorder in sodium nitrate,” Journal of Physical Society of Japan, Vol. 19, 1964, pp. 1281-1290. doi:10.1143/JPSJ.19.1281
[5] Nakagawa and Walter, 1969.
[6] T. Y. Shen, S. S. Mitra, H. Prask and S. F. Trevino, “Order-disorder phenomenon in sodium nitrate studied by low-frequency Raman scattering,” Physical Review, Vol. 12, 1975, pp. 4530-4533. doi:10.1103/PhysRevB.12.4530
[7] H. Yasaka, A. Sakai and T. Yagi, “A central peak in the order-disorder phase transition of sodium nitrate,” Journal of Physical Society of Japan, Vol. 54, 1985, pp. 3697-3700. doi:10.1143/JPSJ.54.3697
[8] V. C. Reinsborough and F. E. W. Wetmore, “Specific heat of sodium nitrate and silver nitrate by medium high temperature adiabatic calorimetry,” Australian Journal of Chemistry, Vol. 20, 1967, pp. 1-8. doi:10.1071/CH9670001
[9] T. Jriri, J. Rogez, C. Bergman and J. C. Mathieu, “Thermodynamic study of the condensed phases of NaNO3, KNO3 and CsNO3 and their transitions,” Thermochimica Acta, Vol. 266, 1995, pp. 147-161. doi:10.1016/0040-6031(95)02337-2
[10] R. A. Bradley, E. Lanzendorf, M. I. McCarthy, M. Orlando and W. P. Hess, “Molecular NO desorption from crystalline sodium nitrate by resonant excitation of the NO3– π π* transition,” Journal of Physical Chemistry, Vol. 99, 1995, pp. 11715-11721. doi:10.1021/j100030a015
[11] M. I. McCarthy, K. A. Peterson and W. P. Hess, “Electronic structure of sodium nitrate: investigations of laser desorption mechanisms,” Journal of Physical Chemistry, Vol. 100, 1996, pp. 6708-6714. doi:10.1021/jp953108n
[12] N.G. Petrik, K. Knutsen, E. Paparazzo, S. Lea, D. M. Camaion and T. M. Orlando, “Electron beam induced damage of NaNO3 single crystals: an energy, temperature, and quantum state resolved study,” Journal of Physical Chemistry, Vol. 104, 2000, pp. 1563-1571. doi:10.1021/jp993310g
[13] J. A. A. Ketalaar and B. Strijk, “The atomic arrangement in solid sodium nitrate at high temperatures,” Recueil des Travaux Chimiques des Pays-Bas et de la Belgique, Vol. 64, 1945, pp. 174.
[14] M. J. Harris, “A new explanation for the unusual critical behavior of calcite and sodium nitrate, NaNO3,” American Mineral, Vol. 84, 1999, pp. 1632-1640.
[15] S. Siegel, “Effect of neutron bombardment on order in the alloy Cu3Au,” Physical Review, Vol. 75, 1949, pp. 1823-1824. doi:10.1103/PhysRev.75.1823
[16] K. O. Str?mme, “The crystal structure of sodium nitrate in the high-temperature phase,” Acta Chemica Scandinavica, Vol. 23, 1969, pp. 1616-1624. doi:10.3891/acta.chem.scand.23-1616
[17] R. M. Lynden-Bell, M. Ferrario, I. R. McDonald and E. Salje, “A molecular dynamics study of orientational disordering in crystalline sodium nitrate,” Journal of Physics Condensed Matter, Vol. 1, 1989, pp. 6523-6542. doi:10.1088/0953-8984/1/37/002
[18] M. Ferrario, R. M. Lynden-Bell and R. M. McDonald, “Structural fluctuations and the order-disorder phase transition in calcite,” Journal of Physics Condensed Matter, Vol. 6, 1994, pp. 1345-1358. doi:10.1088/0953-8984/6/7/007
[19] J. Liu, C. G. Duan, M. M. Ossowski, W. N. Mei, R. W. Smith and I. R. Hardy, “Simulation of structural phase transition in NaNO3 and CaCO3," Physical Chemistry of Minerals, Vol. 28, 2001, pp. 586-590. doi:10.1007/s002690100191
[20] I. Laulicht and N. Lucnar, “Internal mode line-broadening by proton jumps in KH2PO4 ,” Chemical Physics Letters, Vol. 47, 1977, pp. 237-240. doi:10.1016/0009-2614(77)80008-0
[21] I. Laulicht, “On the drastic temperature broadening of hard mode Raman lines of ferroelectric KDP type crystals near Tc,” Journal of Physics and Chemistry of Solids, Vol. 39, 1978, pp. 901-906. doi:10.1016/0022-3697(78)90153-1
[22] M. Matsushita, “Anomalous temperature dependence of the frequency and damping constant of phonons near Tλ in ammonium halides,” Journal of Chemical Physics, Vol. 65, 1976, pp. 23-28. doi:10.1063/1.432804
[23] W. C. K. Poon and E. Salje, “The excess optical birefringence and phase transition in sodium nitrate,” Journal of Physics C: Solid State Physics, Vol. 21, 1988, pp. 715-729. doi:10.1088/0022-3719/21/4/009
[24] W. W. Schmahl and E. Salje, “X-ray diffraction study of the orientational order disorder transition in NaNO3: evidence for order parameter coupling,” Physics and Chemistry of Minerals, Vol. 16, 1989, pp. 790-798. doi:10.1007/BF00209703

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.