Task-related brain oscillations in normal aging
Ming-Chung Ho, Chin-Fei Huang, Chia-Yi Chou, Yu-Te Lin, Ching-Sen Shih, Ming-Ting Wu, Chao-Ming Hung, Chia-Ju Liu
Department of Environmental and Occupational Safety and Hygiene, Graduate Institute of Environmental Management, Tajen University, Pingtung, Chinese Taipei.
Department of Physics, National Kaohsiung Normal University, Kaohsiung, Chinese Taipei.
Faculty of Medicine, National Yang-Ming University, Shipai, Chinese Taipei.
Graduate Institute of Science Education, National Kaohsiung Normal University, Kaohsiung, Chinese Taipei.
Section of General Surgery, E-DA Hospital, Kaohsiung, Chinese Taipei.
Section of Neurology, Kaohsiung Veterans General Hospital, Kaohsiung, Chinese Taipei.
DOI: 10.4236/health.2012.429118   PDF    HTML   XML   4,690 Downloads   7,394 Views   Citations

Abstract

During the past few years, many researchers have demonstrated the importance of the age-related changes in spontaneous electroencephalography. However, very little research on of the event-related responses of oscillations connections has been used to examine the changes during normal aging. The aim of the present study was to investigate age-related changes of task-related brain oscillations, which include spectral power and omega-complexity. We hypothesized that the power and omega-complexity of the brain are affected by age-related changes, which could be observed in this study. The samples included young and healthy elderly groups. Compared to young participants, elderly participants were found to have increased power in anterior area and decreased power in posterior area, and have shown a decreased power in the alpha-1 (7 - 10 Hz) and alpha-2 (10 - 13 Hz) bands and an increased power in the delta (1 - 4 Hz) band. Elderly participants were found to have increased omega-complexity in the anterior and posterior brain areas, and have shown an increased omega-complexity in the alpha-2, beta-1 (13 - 18 Hz), and beta-2 (18 - 30 Hz) bands. The findings in this study suggest that power and omega-complexity changes in task-specific neural activity may potentially be used to assess age-related decline in the brain.

Share and Cite:

Ho, M. , Huang, C. , Chou, C. , Lin, Y. , Shih, C. , Wu, M. , Hung, C. and Liu, C. (2012) Task-related brain oscillations in normal aging. Health, 4, 762-768. doi: 10.4236/health.2012.429118.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Gaál, Z.A., Boha, R., Stam, C.J. and Molnár, M. (2010) Age-dependent features of EEG-reactivity—Spectral, complexity, and network characteristics. Neuroscience Letters, 479, 79-84. doi:10.1016/j.neulet.2010.05.037
[2] Stam, C.J., Breakspear, M., van Walsum, A.-M.V.C. and van Dijk, B.W. (2003) Nonlinear synchronization in EEG and whole-head MEG recordings of healthy subjects. Human Brain Mapping, 19, 63-78. doi:10.1002/hbm.10106
[3] Czigler, I., Cox, T.J., Gyimesi, K. and Horváth, J. (2007 Event-related potential study to aversive auditory stimuli. Neuroscience Letters, 420, 251-256. doi:10.1016/j.neulet.2007.05.007
[4] Basar, E. and Guntekin, B. (2008) A review of brain oscillations in cognitive disorders and the role of neurotransmitters. Brain Research, 1235, 172-193. doi:10.1016/j.brainres.2008.06.103
[5] Yordanova, J.Y., Kolev, V.N. and Basar, E. (1998) EEG theta and frontal alpha oscillations during auditory processing change with aging. Electroencephalography and Clinical Neurophysiology, 108, 497-505. doi:10.1016/S0168-5597(98)00028-8
[6] Ho, M.C., Chou, C.Y., Huang, C.F., Lin, Y.T., Shih, C.S., Han, S.Y. and Liu, C.J. (2012) Age-related changes of task-specific brain activity in normal aging. Neuroscience Letters, 507, 78-83. doi:10.1016/j.neulet.2011.11.057
[7] Ba?ar-Eroglu, C., Ba?ar, E., Demiralp, T. and Schurmann, M. (1992) P300-response: Possible psychophysiological correlates in delta and theta frequency channels. A review. International Journal of Psychophysiology, 13, 161-179. doi:10.1016/0167-8760(92)90055-G
[8] Polich, J. (1996) Meta analysis of P300 normative aging studies. Psychophysiology, 33, 334-353. doi:10.1111/j.1469-8986.1996.tb01058.x
[9] Polich, J. (1997) On the relationship between EEG and P300: Individual differences, aging, and ultradian rhythms. International Journal of Psychophysiology, 26, 299-317. doi:10.1016/S0167-8760(97)00772-1
[10] Folstein, M., Folstein, S. and McHugh, P. (1975) Minimental state. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189. doi:10.1016/0022-3956(75)90026-6
[11] Dauwels, J., Vialatte, F., Musha, T. and Cichocki, A. (2010) A comparative study of synchrony measures for the early diagnosis of Alzheimer’s disease based on EEG. Neuroimage, 49, 668-693. doi:10.1016/j.neuroimage.2009.06.056
[12] Wackermann, J. (1996) Beyond mapping: Estimating complexity of multichannel EEG recordings. Acta Neuro-biologiae Experimentalis, 56, 197.
[13] Szelenberger, W., Wackermann, J., Skalski, M., Niemcewicz, S. and Drojewski, J. (1996) Analysis of complexity of EEG during sleep. Acta Neurobiologiae Experimentalis, 56, 165.
[14] Stancak, A. and Wackermann, J. (1998) Spatial EEG synchronisation over sensorimotor hand areas in brisk and slow self-paced index finger movements. Brain Topography, 11, 23-31. doi:10.1023/A:1022214402649
[15] Bhattacharya, J. (2000) Complexity analysis of spontaneous EEG. Acta Neurobiologiae Experimentalis, 60, 495-502.
[16] Bhattacharya, J. and Petsche, H. (2001) Musicians and the gamma band: A secret affair? NeuroReport, 12, 371. doi:10.1097/00001756-200102120-00037
[17] Yoshimura, M., Isotani, T., Yagyu, T., Irisawa, S., Yoshida, T., Sugiyama, M. and Kinoshita, T. (2004) Global approach to multichannel electroencephalogram analysis for diagnosis and clinical evaluation in mild Alzheimer’s disease. Neuropsychobiology, 49, 163-166. doi:10.1159/000076724
[18] Kondakor, I., Toth, M., Wackermann, J., Gyimesi, C., Czopf, J. and Clemens, B. (2005) Distribution of spatial complexity of EEG in idiopathic generalized epilepsy and its change after chronic valproate therapy. Brain Topography, 18, 115-123. doi:10.1007/s10548-005-0280-z
[19] Delorme, A. and Makeig, S. (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134, 9-21. doi:10.1016/j.jneumeth.2003.10.009
[20] Cabeza, R. (2002) Hemispheric asymmetry reduction in older adults: The HAROLD model. Psychology and Aging, 17, 85-100. doi:10.1037//0882-7974.17.1.85
[21] Cabeza, R., Anderson, N.D., Locantore, J.K. and McIntosh, A.R. (2002) Aging gracefully: Compensatory brain activity in high-performing older adults. Neuroimage, 17, 1394-1402. doi:10.1006/nimg.2002.1280
[22] Grady, C.L. (1998) Brain imaging and age-related changes in cognition. Experimental Gerontology, 33, 661-673. doi:10.1016/S0531-5565(98)00022-9
[23] Phillips, L.H. and Andrés, P. (2010) The cognitive neuroscience of aging: New findings on compensation and connectivity. Cortex, 46, 421-424. doi:10.1016/j.cortex.2010.01.005
[24] Pfefferbaum, A., Wenegrat, B.G., Ford, J.M., Roth, W.T. and Kopell, B.S. (1984) Clinical application of the P3 component of event-related potentials. II. Dementia, depression and schizophrenia. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 59, 104-124.
[25] Klimesch, W. (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Research Reviews, 29, 169-195. doi:10.1016/S0165-0173(98)00056-3
[26] Polich, J. (1997) EEG and ERP assessment of normal aging. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 104, 244-256.
[27] Miller, E.K., and Cohen, J.D. (2001) An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167-202. doi:10.1146/annurev.neuro.24.1.167
[28] Kononen, M. and Partanen, J. (1993) Blocking of EEG alpha activity during visual performance in healthy adults. A quantitative study. Electroencephalography and Clinical Neurophysiology, 87, 164-166. doi:10.1016/0013-4694(93)90122-C
[29] McEvoy, L.K., Pellouchoud, E., Smith, M.E. and Gevins, A. (2001) Neurophysiological signals of working memory in normal aging. Cognitive Brain Research, 11, 363-376. doi:10.1016/S0926-6410(01)00009-X
[30] Vecchio, F., Babiloni, C., Ferreri, F., Buffo, P., Cibelli, G., Curcio, G. and Rossini, P.M. (2010) Mobile phone emission modulates inter-hemispheric functional coupling of EEG alpha rhythms in elderly compared to young subjects. Clinical Neurophysiology, 121, 163-171. doi:10.1016/j.clinph.2009.11.002
[31] Breznitz, Z. (2003) Speed of phonological and orthographic processing as factors in dyslexia: Electrophysiological evidence. Genetic, Social, and General Psychology Monographs, 129, 183-206.
[32] Kolev, V., Yordanova, J., Schürmann, M. and Ba?ar, E. (1999) Event-related alpha oscillations in task processing. Clinical Neurophysiology, 110, 1784-1792. doi:10.1016/S1388-2457(99)00105-4

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.