Optimization of the Chitinase Production by Different Metarhizium anisopliae Strains under Solid-State Fermentation with Silkworm Chrysalis as Substrate Using CCRD

Abstract

Entomopathogenic fungi, such as Metarhizium anisopliae, are able to control various insect pests. These fungi attack the integument of the host using an enzymatic complex. Among the enzymes found in this complex, chitinase is an important component. However, the relation between the chitinase production and the virulence from different M. anisopliae strains has not been analyzed. In this manuscript it is presented the chitinase production by four M. anisopliae strains with different potential of virulence in Solid-State Fermentation using silkworm chrysalis as substrate. The higher chitinase level was obtained with the strain IBCB 360 (7.14 U/g of substrate) with potential virulence of 68% on Diatrea saccharalis. The enzyme production was optimized for all strains using a factorial planning (CCRD) considering the cultivation time and medium humidity as independent variables. The maximal production of chitinase was obtained at a range from 8 to 12-days old cultures and from 45% to 62% of moisture according to the surface response plot, with high R2 value. The enzyme production by the strain IBCB 167 was increased two-folds under optimized conditions, while for the strains IBCB 360 and 425 the chitinase production was increased four-folds and nine-folds for the strain IBCB 384.

Share and Cite:

C. Barbosa Rustiguel, J. Atílio Jorge and L. Henrique Souza Guimarães, "Optimization of the Chitinase Production by Different Metarhizium anisopliae Strains under Solid-State Fermentation with Silkworm Chrysalis as Substrate Using CCRD," Advances in Microbiology, Vol. 2 No. 3, 2012, pp. 268-276. doi: 10.4236/aim.2012.23032.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. B. Alves, “Controle Microbiano de Insetos,” 2nd Edition, FEALQ, Piracicaba, 1998.
[2] R. J. St. Leger, P. K. Durrands, R. M. Cooper and A. K. Charnley, “Regulation of Production of Proteolytic Enzymes by Entomopathogenic Fungus Metarhizium anisopliae,” Achieves of Microbiology, Vol. 150, No. 4, 1988, pp. 413-416. Hdoi:10.1007/BF00408316
[3] S. Paris and G. Segretain, “Etude de l’activité Lipasique Esterasique Intracellulaire Beauveria tenella,” Annales de Micrology, Vol. 129, 1978, pp. 71-77.
[4] M. V. Da Silva, L. Santi, C. C. Staats, A. M. Costa, E. M. Colodel, D. Driemeier, M. H. Vainstein and A. Schrank, “Cuticle-Induced Endo/Exoacting Chitinase CHIT30 from Metarhizium anisopliae Is Encoded by an Ortholog of the chi3 Gene,” Research in Microbiology, Vol. 156, No. 3, 2005, pp. 382-392. Hdoi:10.1016/j.resmic.2004.10.013
[5] J. Y. Boldo, A. Junges, K. B. Amaral, D. C. Staats, M. H. Vainstein and A. Schrank, “Endochitinase CHI2 of the Biocontrol Fungus Metarhizium anisopliae Virulence Ex- cellent Affects toward the Cotton Stainer Bug Dysdercus peruvianus,” Current Genetics, Vol. 55, No. 5, 2009, pp. 551-560. Hdoi:10.1007/s00294-009-0267-5
[6] P. A. Shah and J. K. Pell, “Entomopathogenic Fungi as Biological Control Agents,” Applied Microbiology Biotechnology, Vol. 61, 2003, pp. 413-423.
[7] F. V. Vega, “Insect pathology and Fungal Endophytes,” Journal of Invertebrate Pathology, Vol. 98, No. 3, 2008, pp. 277-279. Hdoi:10.1016/j.jip.2008.01.008
[8] L. O. Zappelini, “Selection of Isolates of the Entomopathogenic Fungi Beauveria bassiana and Metarhizium anisopliae for the Control of Sugarcane Borer-Cane, Diatraea saccharalis (Lepidoptera: Crambidae),” Master Dissertation, Biological Institute, Campinas, S?o Paulo, 2009.
[9] L. F. Fleuri and H. Sato, “Production, Purification, Cloning and Application of Lytic Enzymes,” Quimica Nova, Vol. 28, No. 5, 2005, pp. 871-879. Hdoi:10.1590/S0100-40422005000500026
[10] R. S. Patil, V. Ghormade and M. V. Deshpande, “Chitinolytic Enzymes: An Exploration,” Enzyme and Microbial Technology, Vol. 26, No. 7, 2000, pp. 473-483. Hdoi:10.1016/S0141-0229(00)00134-4
[11] L. Duo-Chuan, “Review of Fungal Chitinases,” Mycopathology, Vol. 161, No. 6, 2006, pp. 345-360. Hdoi:10.1007/s11046-006-0024-y
[12] D. M. F. Van Aalten, D. Komander, B. Systand, S. Gaseidnes, M. G. Peter and V. G. H. Eijsink, “Structural Insights into the Catalytic Mechanism of a Family 18 Exochitinase,” Proceedings of the National of Sciences Academy, Vol. 98, No. 16, 2011, pp. 8979-8984. Hdoi:10.1073/pnas.151103798
[13] A. C. S. Rizzatti, J. A. Jorge, H. F. Terenzi, C. G. V. Rechia and M. L. T. M. Polizeli, “Purification and Properties of a ThermosTable Extracellular β-D-Xylosidase Produced by Thermotolerant Aspergillus phoenicis,” Journal of Industrial Microbiology and Biotechnology, Vol. 26, No. 3, 2001, pp. 156-160. Hdoi:10.1038/sj.jim.7000107
[14] P. Khanna, S. S. Sundari and N. J. Kumar, “Production, Isolation and Partial Purification of Xylanase from Aspergillus sp.,” World Journal of Microbiology and Biotechnology, Vol. 11, No. 2, 1995, pp. 242-243. Hdoi:10.1007/BF00704661
[15] E. A. Yamada, I. D. Alvim, M. C. C. Santucci and V. C. Sgarbieri, “Composi??o Centesimal e Valor Protéico de Levedura Residual da Fermenta??o Etanólica e de seus Derivados,” Revista de Nutri??o Campinas, Vol. 16, 2003, pp. 423-432.
[16] E. Espósito and J. L. Azevedo, “Fungos: Uma Introdu??o à Biologia, Bioquímica e Biotecnologia,” Editora da Universidade de Caxias do Sul, Brazil, 2004.
[17] P. G. V. S. Bhanu, V. Padmaja and R. R. S. Kiran, “Statistical Optimization of Process Variables for the Large-Scale Production of Metarhizium anisopliae Conidiospores in Solid-State Fermentation,” Bioresource Technolology, Vol. 99, No. 6, 2008, pp. 1530-1537. Hdoi:10.1016/j.biortech.2007.04.031
[18] B. Patel, V. Gohel and B. Raol, “Statistical Optimization of Medium Components for Chitinase Production by Paenibacillus sabina Strain JD2,” Annals of Microbiology, Vol. 57, No. 4, 2007, pp. 589-597. Hdoi:10.1007/BF03175360
[19] N. Rattanakit, A. Plikomol, S. Yano, M. Wakayama and T. Tachiki, “Utilization of Shrimp Shellfish Waste as a Substrate for Solid-State Cultivation of Aspergillus sp. S1-13: Evaluation of a Culture Based on Chitinase Formation Which Is Necessary for Chitin-Assimilation,” Journal of Biosciense and Bioengineering, Vol. 93, 2002, pp. 550-556.
[20] M. Nampoothiri, T. V. Baiju, C. Sandhya, A. Sabu, G. Szakacs and A. Pandey, “Process Optimization for Antifungal Chitinase Production by Trichoderma harzianum,” Process Biochemistry, Vol. 39, No. 11, 2004, pp. 1583-1590. Hdoi:10.1016/S0032-9592(03)00282-6
[21] G. U. L. Braga, C. L. Messiah and R. Vencovsky, “Estimates of Genetic Parameters Related to Chitinase Production by the Entomopathogenic Fungus Metarhizium anisopliae,” Genetics and Molecular Biology, Vol. 21, No. 2, 1998, pp. 171-177. Hdoi:10.1590/S1415-47571998000200001
[22] L. F. Fleuri, H. Y. Kawaguti and H. H. Sato, “Production and Application of Extracellular Chitinase from Cellulosimicrobium cellulans,” Brazilian Journal of Microbiology, Vol. 40, No. 3, 2009, pp. 623-630. Hdoi:10.1590/S1517-83822009000300026
[23] R. F. Guo, B. S. Shi, D. C. Li, W. Ma and Q. Wei, “Purification and Characterization of a Novel ThermosTable chitinase from Thermomyces lanuginosus SY2 and Cloning of Its Encoding Gene,” Agriculture Science, Vol. 7, 2008, pp. 1458-1465.
[24] S. R. Waghmare and J. S. Ghosh, “Study of Thermostable Chitinases from Oerskovia xanthineolytica NCIM 2839,” Applied Microbiology and Biotechnology, Vol. 86, No. 6, 2010, pp. 1849-1856. Hdoi:10.1007/s00253-009-2432-7
[25] C. Wang, M. A. Typas and T. M. Butt, “Detection and Characterization of pr 1 Virulent Gene Deficiencies in the Insect Pathogenic Fungus Metarhizium anisopliae,” FEMS Microbiology Letters, Vol. 231, 2002, pp. 252-255.
[26] M. J. J. Pelczar, E. C. S. Chan and N. R. Krieg, “Microbiologia: Conceitos e Aplica??es,” 2nd Edition, Markron Books, New York, 1996.
[27] M. J. Bidochka and G. G. Khachatourians, “Identification of Beauveria bassiana Extracellular Protease as a Virulence Factor in Pathogenicity toward the Migratory Grasshopper, Melanoplus sanguinipes,” Journal of Invertebrate Pathology, Vol. 56, No. 3, 1990, pp. 362-370. Hdoi:10.1016/0022-2011(90)90123-N
[28] U. Mustafa and G. Kaur, “Extracellular Enzyme Production in Metarhizium anisopliae Isolates,” Folia Microbiologica, Vol. 54, No. 6, 2009, pp. 499-504. Hdoi:10.1007/s12223-009-0071-0
[29] W. O. B. Silva, S. Mitidieri, A. Schrank and M. H. Vainstein, “Production and Extraction of an Extracellular Lipase from the Entomopathogenic Fungus Metarhizium anisopliae,” Process Biochemistry, Vol. 40, No. 1, 2005, pp. 321-326. Hdoi:10.1016/j.procbio.2004.01.005
[30] F. M. Freimoser, S. E. Screen, S. Baga, G. Hu and R. J. St. Leger, “Expressed Sequence Tag (ETS) Analysis of Two Subspecies of Metarhizium anisopliae Reveals a Plethora of Secreted Proteins with Potential Activity in Insect Host,” Microbiology, Vol. 149, No. 1, 2003, pp. 239-247. Hdoi:10.1099/mic.0.25761-0
[31] C. Wang and R. J. St. Leger, “Developmental and Transcription Responses to Host and No Host Cuticles by the Specific Locust Pathogen Metarhizium anisopliae var. acridum,” Eukaryotic Cell, Vol. 4, No. 5, 2005, pp. 937-947. Hdoi:10.1128/EC.4.5.937-947.2005

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.