Depth Integrated Microbial Community and Physico-Chemical Properties in Mangrove Soil of Sundarban, India

Abstract

In the Sundarban Mangrove forest microbial activities are dominantly involved in both the mineralization and decomposition processes that regulate nutrient profile in soil of different depth. It was found that besides changing the water and soil quality, monsoonal cycle plays a crucial role in regulating microbial population distribution in the mangrove soil. Statistical analyses revealed that organic carbon was the most significant factor that regulated the total microbial population. The cellulose degrading bacteria, [mean value of CFU 14.32 × 106 (gm dry weight of soil)–1] was dominant throughout the year. The sulfate reducing bacteria showed an increasing trend along depth with a minimum value at the surface i.e. 6.113 × 106 (gm dry weight of soil)–1 and 12.312 × 106 (gm dry weight of soil)–1 at a depth of 60 cm. Intensification of monsoonal cycle could heavily affect microbe dominated soil biogeochemistry and subsequent change in the regional ecology of the Sundarban Mangrove Forest.

Share and Cite:

S. Das, M. De, D. Ganguly, T. Kanti Maiti, A. Mukherjee, T. Kumar Jana and T. Kuma De, "Depth Integrated Microbial Community and Physico-Chemical Properties in Mangrove Soil of Sundarban, India," Advances in Microbiology, Vol. 2 No. 3, 2012, pp. 234-240. doi: 10.4236/aim.2012.23028.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] B. Gonzalez-Acosta, Y. Bashan, N. Y. Hernandez-Sa- avedra, F. Ascenaio and G. Cruz-Aguero, “Seasonal Seawater Temperature as the Major Determinant for Populations of Culturable Bacteria in the Soils of an Intact Mangrove in an Arid Region,” FEMS Microbiology Ecology, Vol. 55, No. 2, 2006, pp. 311-321. doi:10.1111/j.1574-6941.2005.00019.x
[2] D. M. Alongi, K. G. Boto and F. Tirendi, “Effect of Exported Mangrove Litter on Bacterial Productivity and Dissolved Organic Carbon Fluxes in Adjacent Tropical Nearshore Soils,” Marine Ecology Progress Series, Vol. 56, 1989, pp. 133-144. doi:10.3354/meps056133
[3] D. M. Alongi, P. Christofferson and F. Tirendi, “The Influence of Forest Type on Microbial-Nutrient Relationship in Tropical Mangrove Soil,” Journal of Experimental Marine Biology and Ecology, Vol. 171, No. 2, 1993, pp. 201-223. doi:10.1016/0022-0981(93)90004-8
[4] D. M. Alongi, “The Role of Bacteria in Nutrient Recycling in Tropical Mangrove and Other Coastal Benthic Ecosystems,” Hydrobiologia, Vol. 285, No. 1-3, 1994, pp. 19-32. doi:10.1007/BF00005650
[5] G. Holguin, Y. Bashan and P. Vazavez, “The Role of Soil Microorganism in the Productivity, Conservation and Rehabilitation of Mangrove Ecosystem: An Overview,” Biology of Fertile Soils, Vol. 33, No. 4, 2001, pp. 265-278. doi:10.1007/s003740000319
[6] G. Toledo, Y. Bashan and A. Soeldner, “Cyanobacteria and Black Mangroves in Northwestern Mexico: Colonization, and Diurnal and Seasonal Nitrogen Fixation on Aerial Roots,” Canadian Journal of Microbiology, Vol. 41, No. 11, 1995, pp. 999-1011. doi:10.1139/m95-139
[7] A. Rojas, G. Holguin, B. R. Glick and Y. Bashan, “Synergism between Phyllobacterium sp. (N2-Fixer) and Bacillus licheniformis (P-Solubilizer), both from a Semiarid Mangrove Rhizosphere,” FEMS Microbiology Ecology, Vol. 35, 2001, pp. 181-187. doi:10.1111/j.1574-6941.2001.tb00802.x
[8] P. Vazquez, G. Holguin, M. E. Puente, A. Lopez-Cortes and Y. Bashan, “Phosphate-Solubilizing Microorganisms Associated with the Rhizosphere of Mangroves in a Semiarid Coastal Lagoon,” Biology and Fertility of Soils, Vol. 30, No. 5-6, 2000, pp. 460-468. doi:10.1007/s003740050024
[9] D. B. Nedwell, T. H. Blackburn and W. J. Wiebe, “Dynamic Nature of the Turnover of Organic Carbon, Nitrogen and Sulpher in the Soil of a Jamaican Mangrove Forest,” Marine Ecology Progress Series, Vol. 110, No. 9, 1994, pp. 223-231. doi:10.3354/meps110223
[10] E. Senior, E. B. Lindstrom, I. M. Banat and D. B. Nedwell, “Sulfate Reduction and Methanogenesis in the Sediment of a Saltmarsh on the East Coast of the United Kingdom,” Applied Environmental Microbiology, Vol. 43, 1982, pp. 987-996.
[11] J. Sorensen, B. B. Jorgensen and N. P. Revsbech, “A Comparison of Oxygen, Nitrate and Sulfate Respiration in Coastal Marine Soil,” Microbial Ecology, Vol. 5, No. 2, 1979, pp. 105-111. doi:10.1007/BF02010501
[12] D. R. Lovley and M. J. Klug, “Intermediary Metabolism of Organic Matter in the Soil of a Eutrophic Lake,” Applied Environmental Microbiology, Vol. 43, 1982, pp. 552-560.
[13] R. Mohanraju and R. Natarajan, “Methanogenic Bacteria in Mangrove Soils,” Hydrobiologia, Vol. 247, No. 1-3, 1992, pp. 187-193. doi:10.1007/BF00008218
[14] C. R. Wang, Y. Shi, X. M. Yang, J. Wu and J. Yue, “Advances of Study on Atmospheric Methane Oxidation (Consumption) in Forest Soil,” Journal of Forestry Research, Vol. 14, No. 3, 2003, pp. 230-238. doi:10.1007/BF02856837
[15] C. B. Teri and K. F. Mary, “Linking Microbial Community Composition and Soil Processes in a California Annual Grassland and Mixed Conifer Forest,” Biogeochemistry, Vol. 73, No. 2, 2005, pp. 395-415. doi:10.1007/s10533-004-0372-y
[16] R. H. Riley, M. Peter and P. M. Vitousek, “Nutrient Dynamics and Nitrogen Trace Gas Flux during Ecosystem Development in Montane Rain Forest,” Ecology, Vol. 76, No. 1, 1995, pp. 292-304. doi:10.2307/1940650
[17] A. L. Ramanathan, G. Singh, J. Majumder, A. C. Samal, R. Chowhan, R. K. Rayan, K. Roykumar and S. C. Santra, “A Study of Microbial Diversity and Its Interaction with Nutrients in the Soils of Sundarban Mangroves,” Indian Journal of Marine Science, Vol. 37, No. 2, 2008, pp. 159-165.
[18] F. K. Sahrani, Z. Ibrahim, A. Yahya and M. Aziz, “Isolation and Identification of Marine Sulfate Reducing Bacteria Desulfovibrio sp and Citrobacter freundii from Pasir Gudang, Malaysia,” Sains Malyasiana, Vol. 37, No. 4, 2008, pp. 365-371.
[19] K. Grasshoff, M. Ehrhardt and K. Kremling, “Standard Methods for Sea Water Analysis,” 2nd edition, Wiley-VCH, Weinheim, 1983.
[20] S. A. B. Mussa, H. S. Elferjani, F. A. Haroun and F. F. Abdelnabi, “Determination of Available Nitrate, Phosphate and Sulfate in Soil Samples” International Journal of PharmTech Research, Vol. 1, 2009, pp. 598-604.
[21] S. C. Tiwari, B. K. Tiwari and R. R. Mishra, “Microbial Community, Enzyme Activity and CO2 Evolution in Pineapple Orchard Soil,” Tropical Ecology, Vol. 30, No. 2, 1989, pp. 265-273.
[22] A. Walkley and J. A. Black, “An Examination of Degtjareff Method for Determining Soil Organic Matter, and a Proposed Modification of the Chromic Acid Titration Method,” Soil Science, Vol. 37, No. 1, 1934, pp. 29-38. doi:10.1097/00010694-193401000-00003
[23] L. A. Richards, “Diagnosis and Improvement of Saline and Alkali Soils,” USDA Hand Book No. 60, Oxford and IBH Publishing Co., New Delhi, 1968.
[24] A. Pidello and L. J. Monrozier, “Inoculation of the Redox Effector Pseudomonas Fluorescens C7R12 Strain Affects Soil Redox Status at the Aggregate Scale,” Soil Biology & Biochemistry, Vol. 38, No. 6, 2006, pp. 1396-1402. doi:10.1016/j.soilbio.2005.10.010
[25] S. M. Wahid, M. S. Babel and A. R. Bhuiyan, “Hydrologic Monitoring and Analysis in the Sundarbans Mangrove Ecosystem, Bangladesh,” Journal of Hydrology, Vol. 332, No. 3-4, 2007, pp. 381-395. doi:10.1016/j.jhydrol.2006.07.016
[26] P. B. Ghosh, B. N. Singh, C. Chakroborty, A. Saha, R. L. Das and A. Choudhury, “Mangrove Litter Production in a Tidal Creek of Lothian Island of Sundarbans, India,” Indian Journal of Marine Sciences, Vol. 19, 1990, pp. 292-293.
[27] C. Hu and Z. P. Cao, “Size and Activity of the Soil Microbial Biomass and Soil Enzyme Activity in Long Term Field Experiments,” World Journal of Agricultural Sciences, Vol. 3, No. 1, 2007, pp. 63-70.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.