Optimization of Diffraction Efficiency and Polarization Dependence Loss in Photopolymer Grating for Use in Multichip Module

Abstract

We in this paper propose a model to increase the diffraction efficiency of a holographic grating at 1550 nm for multiplexing application. To use such a grating, polarization dependence loss is introduced analytically and then optimized for its minimum value A configuration of holographic grating is proposed based on both maximum diffraction efficiency and minimum polarization dependence loss. The proposed grating is expected to find importance in optoelectronic multichip module.

Share and Cite:

L. Sahu, J. Achary and S. Tripathy, "Optimization of Diffraction Efficiency and Polarization Dependence Loss in Photopolymer Grating for Use in Multichip Module," Journal of Modern Physics, Vol. 3 No. 9, 2012, pp. 1009-1012. doi: 10.4236/jmp.2012.39131.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. E. Willner, “Mining the Optical Bandwidth for a Terabit per Second,” IEEE Spectrum, Vol. 4, No. 34, 1997, pp. 32-41. doi:10.1109/6.583444
[2] M. Saruwatari, “High-Speed Optical Signal Processing for Communication Systems,” IEICE Transactions on Communications, Vol. 5, No. E78-B, 1995, pp. 635-643.
[3] N. S. Bergano and C. R. Davidson, “Wavelength Division Multiplexing in Long-Haul Transmission Systems,” Journal of Light-Wave Technology, Vol. 6, No. 14, 1996, pp. 1299-1308. doi:10.1109/50.511662
[4] B. Nyman, M. Farries and C. Si, “Technology Trends in Dense WDM Demultiplexer,” Optical Fiber Technology, Vol. 7, No. 4, 2001, pp. 255-274. doi:10.1006/ofte.2001.0346
[5] J. W. An, D. D. Do, N. Kim and K. Y. Lee, “Expansion of Channel Number in Optical Demultiplexer Using Cascaded Photo Polymer Volume Gratings,” IEEE Photonics Technology Letters, Vol. 18, No. 6, 2006, pp. 788-790. doi:10.1109/LPT.2006.871698
[6] S. Chung, S. Han, T. Kim and B. Lee, “Photopolymer Holographic Grating for a High-Resolution Tunable De-Multiplexer,” IEEE Photonics Technology Letters, Vol. 1, No. 3, 2005, pp. 597-599. doi:10.1109/LPT.2004.842387
[7] T. Kim, S. Chung, S. Han and B. Lee, ‘Photopolymer Based Demultiplexer with Superposed Holographic Gratings,” IEEE Photonics Technology Letters, Vol. 17, No. 3, 2005, pp. 618-620. doi:10.1109/LPT.2004.842355
[8] D. D. Do, N. Kim, J. W. An and K. Y. Lee, “Effects on a Apodization on a Holographic Demultiplexer Based on a Photopolymer Grating,” Applied Optics, Vol. 43, No. 23, 2004, pp. 4520-4526. doi:10.1364/AO.43.004520
[9] H. Kogelnik, “Coupled Wave Theory for Thick Hologram Grating,” Bell System Technology Journal, Vol. 48, No. 9, 1969, pp. 2909-2947.
[10] R. K. Kostuk, T. J. Kim, G. Campbell and C. W. Han, “Diffractive-Optic Polarization Sensing Element for Magneto-Optic Storage Head,” Optics Letters, Vol. 19, No. 16, 1994, pp. 1257-1259. doi:10.1364/OL.19.001257
[11] K.-Y. Lee, S.-H. Jeung, D. D. Do, N. Kim and J.-W. An, “Holographic Demultiplexer with Low Polarization De- pendence Loss Using Photopolymer Diffraction Gratings,” Journal of the Optical Society of Korea, Vol. 2, No. 2, 2007, pp. 51-54. doi:10.3807/JOSK.2007.11.2.051
[12] G. C. Bjorkiund, et al., “A Holographic Technique for Investigating Photochemical Reactions,” Journal of Chemical Physics, Vol. 73, 1980, p. 4321. doi:10.3807/JOSK.2007.11.2.051

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.