Validation of a Novel Method for Cardiac Output Estimation by CT Coronary Angiography

Abstract

Background: Cardiac output can be estimated during retrospectively gated CT coronary angiography by anatomically determining left ventricular volumes; prospective triggering to minimize radiation precludes this methodology. We propose an alternative method for cardiac output estimation based on preclinical models suggesting that cardiac output may be inversely related to contrast washout from the aortic root during timing bolus scanning, as measured by peak aortic root contrast attenuation. Methods: 34 patients had CT coronary angiography timing bolus performed with 20 ml iodixanol at 5.5 ml/s followed by 20 ml normal saline at 5.5 ml/s through an 18-Ga antecubital catheter. Peak aortic root contrast attenuation was correlated to cardiac output calculated by echocardiography using heart rate stroke volume from biplane Simpson’s method.Results: Mean age was 58 ± 13 years; body surface area, 2.0 ± 0.5 m2. 53% were women. Stroke volume, cardiac output and cardiac index were 67 ± 19 ml, 4.5 ± 1.6 L/min, and 2.2 ± 0.7 L/min/m2, respectively. Peak aortic root contrast attenuation was 207 ± 46 HU and correlated to cardiac output and cardiac index with r = –0.64, p < 0.0001 and r = –0.55, p < 0.001, respectively. Regression analysis estimates cardiac output = –0.02 peak aortic root contrast attenuation +9.1. Conclusion: This novel method for cardiac output estimation by CTCA appears feasible. The CT physiologic parameters using the timing test-bolus data moderately correlated with echocardiographic assessment of cardiac output. The calculation of cardiac output adds important hemodynamic data to anatomic information provided by CTCA, and further development of this method may preserve assessment of left ventricular performance in prospective triggering.

Share and Cite:

Mehta, H., Choi, B., Sanai, R., Dusaj, R., Mohsen, A., Liang, C., Lewis, J. and Zeman, R. (2012) Validation of a Novel Method for Cardiac Output Estimation by CT Coronary Angiography. Advances in Computed Tomography, 1, 11-16. doi: 10.4236/act.2012.12003.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] G. M. Pohost, L. Hung and M. Doyle, “Clinical Use of Cardiovascular Magnetic Resonance,” Circulation, Vol. 108, No. 6, 2003, pp. 647-653. doi:10.1161/01.CIR.0000083233.86078.3E
[2] J. D. Schuijf, J. J. Bax, L. P. Salm, J. W. Jukema, H. J. Lamb, E. E. van der Wall and A. de Roos, “Noninvasive Coronary Imaging and Assessment of Left Ventricular Function Using 16-Slice Computed Tomography,” American Journal of Cardiology, Vol. 95, No. 5, 2005, pp. 571-574. doi:10.1016/j.amjcard.2004.11.002
[3] S. M. Chang, S. Bhatti and F. Nabi, “Coronary Computed Tomography Angiography,” Current Opinion in Cardiology, Vol. 26, No. 5, 2011, pp. 392-402. doi:10.1097/HCO.0b013e32834938c6
[4] G. L. Raff, K. M. Chinnaiyan, D. A. Share, T. Y. Goraya, E. A. Kazerooni, M. Moscucci, R. E. Gentry and A. Abidov, “Radiation Dose from Cardiac Computed Tomography Before and after Implementation of Radiation Dose-Reduction Techniques,” Journal of American Medical Association, Vol. 301, No. 22, 2009, pp. 2340-2348. doi:10.1001/jama.2009.814
[5] J. Conway and P. Lund-Johansen, “Thermodilution Method for Measuring Cardiac Output,” European Heart Journal, Vol. 11, No. 1, 1990, pp. 17-20.
[6] A. H. Mahnken, E. Klotz, A. Hennemuth, B. Jung, R. Koos, J. E. Wildberger and R. W. Gunther, “Measurement of Cardiac Output from a Test-Bolus Injection in Multislice Computed Tomography,” European Radiology, Vol. 13, No. 11, 2003, pp. 2498-2504. doi:10.1007/s00330-003-2054-x
[7] R. J. Herfkens, L. Axel, M. J. Lipton, S. Napel, W. Berninger and R. Redington, “Measurement of Cardiac Output by Computed Transmission Tomography,” Investigative Radiology, Vol. 17, No. 6, 1982, pp. 550-553. doi:10.1097/00004424-198211000-00005
[8] J. S. Garrett, P. Lanzer, W. Jaschke, E. Botvinick, R. Sievers, C. B. Higgins and M. J. Lipton, “Measurement of Cardiac Output by Cine Computed Tomography,” American Journal of Cardiology, Vol. 56, No. 10, 1985, pp. 657-661. doi:10.1016/0002-9149(85)91030-6
[9] K. T. Bae, J. P. Heiken and J. A. Brink, “Aortic and Hepatic Contrast Medium Enhancement at CT. II. Effect of Reduced Cardiac Output in a Porcine Model,” Radiology, Vol. 207, No. 3, 1998, pp. 657-662.
[10] J. H. McGowan and J. G. F. Cleland, “Reliability of Reporting Left Ventricular Systolic Function by Echocardiography: A Systematic Review of 3 Methods,” American Heart Journal, Vol. 146, No. 3, 2003, pp. 388-397. doi:10.1016/S0002-8703(03)00248-5
[11] N. E. Manghat, G. J. Morgan-Hughes, S. R. Shaw, A. J. Marshall and C. A. Roobottom, “Impaired Left Ventricular Function Has a Detrimental Effect on Image Quality in Multi-Detector Row CT Coronary Angiography,” Clinical Radiology, Vol. 63, No. 4, 2008, pp. 415-423. doi:10.1016/j.crad.2007.08.019
[12] K. T. Bae, “Intravenous Contrast Medium Administraction and Scan Timing at CT: Considerations and Approaches,” Radiology, Vol. 256, No. 1, 2010, pp. 32-61. doi:10.1148/radiol.10090908
[13] R. S. Dusaj, K. C. Michelis, M. Terek, R. Sanai, R. Mittal, J. F. Lewis, R. K. Zeman and B. G. Choi, “Estimation of Right Atrial and Ventricular Hemodynamics by CT Coronary Angiography,” Journal of Cardiovascular Computed Tomography, Vol. 5, No. 1, 2011, pp. 44-49. doi:10.1016/j.jcct.2010.10.005
[14] S. M. Shors, W. G. Cotts, B. Pavlovic-Surjancev, C. J. Francois and J. P. Finn, “Heart Failure: Evaluation of Cardiopulmonary Transit Times with Time-Resolved MR Angiography,” Radiology, Vol. 229, No. 3, 2003, pp. 743-748. doi:10.1148/radiol.2293021363

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.