D-Cell Hypothesis: Pathogenesis of Mesolimbic Dopamine Hyperactivity of Schizophrenia

Abstract

In the present article, the author proposes a new “D-cell hypothesis” for mesolimbic dopamine (DA) hyperactivity of schizophrenia, of which relevant molecular mechanism has not yet been known. The “D-cell” is defined as “the non-monoaminergic aromatic L-amino acid decarboxylase (AADC)-containing cell”. The D-cell contains AADC but not dopaminergic nor serotonergic. D-cells produce trace amines, and also take up amine precursors and convert them to amines by decarboxylation. The author reported “dopa-decarboxylating neurons specific to the human striatum”, that is, “D-neurons” in the human striatum, and preliminarily the number reduction of D-neurons in the striatum and nucleus accumbens of postmortem brains of patients with schizophrenia. Trace amine-associated receptor, type 1 (TAAR1), a subtype of trace amine receptors, having a large number of ligands, including tyramine, β-phenylethylamine (PEA), and methamphetamine, is a target receptor for the latest neuroleptic discovery. Recent studies have shown that the decreased stimulation of TAAR1 on cell membranes or nerve terminals of DA neurons in the midbrain ventral tegmental area (VTA) increased firing frequency of VTA DA neurons. In brains of schizophrenia, dysfunction of neural stem cells in the subventricular zone of lateral ventricle may cause reduction of the number of D-neurons in the striatum and nucleus accumbens, and may result in decrease of trace amine synthesis. The decrease of stimulation of TAAR1 on terminals of VTA DA neurons caused by trace amine reduction may increase firing frequency of VTA DA neurons, and may finally cause mesolimbic DA hyperactivity. This innovative theory, “D-cell hypothesis” might explain mesolimbic DA hyperactivity in pathogenesis of schizophrenia.

Share and Cite:

K. Ikemoto, "D-Cell Hypothesis: Pathogenesis of Mesolimbic Dopamine Hyperactivity of Schizophrenia," Journal of Behavioral and Brain Science, Vol. 2 No. 3, 2012, pp. 411-414. doi: 10.4236/jbbs.2012.23048.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] T. Hokfelt, A. Ljungdahl, K. Fuxe and N. Takashima, “Dopamine Nerve Terminals in the Rat Limbic Cortex: Aspects of the Dopamine Hypothesis of Schizophrenia,” Science, Vol. 184, No. 4133, 1974, pp. 177-179. doi:10.1126/science.184.4133.177
[2] M. Toru, T. Nishikawa, N. Mataga and N. Takashima, “Dopamine Metabolism Increases in Post-Mortem Schizophrenic Basal Ganglia,” Journal of Neural Transmission, Vol. 54, No. 3-4, 1982, pp. 181-191. doi:10.1007/BF01254928
[3] L. Watis, S. H. Chen, H. C. Chua, S. A. Chong and K. Sim, “Glutamatergic Abnormalities of the Thalamus in Schizophrenia: A Systematic Review,” Journal of Neural Transmission, Vol. 115, No. 3, 2008, pp. 493-511. doi:10.1007/s00702-007-0859-5
[4] H. M. Olbrich, G. Valerius, N. Rüsch, M. Buchert, T. Thiel, J. Hennig, D. Ebert and L. T. Van Elst, “Frontolimbic Glutamate Alterations in First Episode Schizophrenia: Evidence from a Magnetic Resonance Spectroscopy Study,” World Journal of Biological Psychiatry, Vol. 9, No. 1, pp. 59-63, 2008. doi:10.1080/15622970701227811
[5] G. W. Christison, M. F. Casanova, D. R. Weinberger, R. Rawlings and J. E. Kleinman, “A Quantitative Investigation of Hippocampal Pyramidal Cell Size, Shape, and Variability of Orientation in Schizophrenia,” Archives of General Psychiatry, Vol. 46, No. 11, 1989, pp. 1027-1032. doi:10.1001/archpsyc.1989.01810110069010
[6] X. Duan, J. H. Chang, S. Ge, R. L. Faulkner, J. Y. Kim, Y. Kitabatake, X. B. Liu, C. H. Yang, J. D. Jordan, D. K. Ma, C. Y. Liu, S. Ganesan, H. J. Cheng, G. L. Ming, B. Lu, and H. Song, “Disrupted-in-Schizophrenia 1 Regulates Integration of Newly Generated Neurons in the Adult Brain,” Cell, Vol. 130, No. 6, 2007, pp. 1146-1158. doi:10.1016/j.cell.2007.07.010
[7] T. J. Raedler, M. B. Knable and D. R. Weinberger, “Schizophrenia as a Developmental Disorder of the Cerebral Cortex,” Current Opinion in Neurobiology, Vol. 8, No. 1, 1998, pp. 157-161. doi:10.1016/S0959-4388(98)80019-6
[8] T. H. McGlashan and R. E. Hoffman, “Schizophrenia as a Disorder of Developmentally Reduced Synaptic Connectivity,” Archives of General Psychiatry, Vol. 57, No. 7, 2000, pp. 637-648. doi:10.1001/archpsyc.57.7.637
[9] K. Ikemoto, A. Nishimura, T. Oda, I. Nagatsu and K. Nishi, “Number of Striatal D-Neurons Is Reduced in Autopsy Brains of Schizophrenics,” Legal Medicine, Vol. 5, 2003, pp. S221-S224. doi:10.1016/S1344-6223(02)00117-7
[10] C. B. Jaeger, G. Teitelman, T. H. Joh, V. R. Albert, D. H. Park and D. J. Reis, “Some Neurons of the Rat Central Nervous System Contain Aromatic-L-Amino-Acid Decarboxylase But Not Monoamines,” Science, Vol. 219, No. 4589, 1983, pp. 1233-1235. doi:10.1126/science.6131537
[11] A. A. Boulton, “Amines and Theories in Psychiatry,” Lancet, Vol. 304, No. 7871, 1974, pp. 52-53.
[12] A. A. Boulton and A. V. Juorio, “The Tyramines: Are They Involved in the Psychoses?” Biological Psychiatry, Vol. 14, No. 2, 1979, pp. 413-419.
[13] K. Komori, T. Fujii, N. Karasawa, K. Yamada, M. Sakai, and I. Nagatsu, “Some Neurons of the Mouse Cortex and Caudo-Putamen Contain Aromatic L-Amino Acid Decarboxylase But Monoamines,” Acta Histochemica et Cytochemica, Vol. 24, No. 6, 1991, pp. 571-577. doi:10.1267/ahc.24.571
[14] C. B. Jaeger, D. A. Ruggiero, V. R. Albert, T. H. Joh and D. J. Reis, “Immunocytochemical Localization of Aromatic-L-Amino Acid Decarboxylase,” In: A. Bj?rklund, and T. H?kfelt, Eds., Handbook of Chemical Neuroanatomy: Classical Transmitters in the CNS, Part I. Elsevier, Amsterdam, 1984, pp. 387-408.
[15] C. B. Jaeger, D. A. Ruggiero, V. R. Albert, D. H. Park, T. H. Joh and D. J. Reis, “Aromatic L-Amino Acid Decarboxylase in the Rat Brain: Immunocytochemical Localization in Neurons of the Rat Brain Stem,” Neuroscience, Vol. 11, No. 3 , 1984, pp. 691-713. doi:10.1016/0306-4522(84)90053-8
[16] Y. Tashiro, T. Kaneko, T. Sugimoto, I. Nagatsu, H. Kikuchi and N. Mizuno, “Striatal Neurons with Aromatic L-Amino Acid Decarboxylase-Like Immunoreactivity in the Rat,” Neuroscience Letters, Vol. 100, No. 1-3, 1989, pp. 29-34. doi:10.1016/0304-3940(89)90655-1
[17] A. Mura, J. C. Linder, S. J. Young and P. M. Groves, “Striatal Cells Containing Aromatic L-Amino Acid Decarboxylase: An Immunohistochemical Comparison with Other Classes of Striatal Neurons,” Neuroscience, Vol. 98, No. 3, 2000, pp. 501-511. doi:10.1016/S0306-4522(00)00154-8
[18] K. Ikemoto, K. Kitahama, A. Jouvet, R. Arai, A. Nishimura, K. Nishi and I. Nagatsu, “Demonstration of L-Dopa Decarboxylating Neurons Specific to Human Striatum,” Neuroscience Letters, Vol. 232, No. 2, 1997, pp. 111-114. doi:10.1016/S0304-3940(97)00587-9
[19] K. Ikemoto, K. Kitahama, A. Jouvet, A. Nishimura, K. Nishi, T. Maeda and R. Arai, “A Dopamine-Synthesizing Cell Group Demonstrated in the Human Basal Forebrain by Dual Labeling Immunohistochemical Technique of Tyrosine Hydroxylase and Aromatic L-Amino Acid Decarboxylase,” Neuroscience Letters, Vol. 243, No. 1-3, 1998, pp. 129-132. doi:10.1016/S0304-3940(98)00103-7
[20] K. Kitahama, K. Ikemoto, A. Jouvet, I. Nagatsu, N. Sakamoto and J. Pearson, “Aromatic L-Amino Acid Decarboxylase and Tyrosine Hydroxylase Immunohistochemistry in the Adult Human Hypothalamus,” Journal of Chemical Neuroanatomy, Vol. 16, No. , 1998, pp. 43-55. doi:10.1016/S0891-0618(98)00060-X
[21] K. Kitahama, K. Ikemoto, A. Jouvet, S. Araneda, I. Nagatsu, B. Raynaud, A. Nishimura, K. Nishi and S. Niwa, “Aromatic L-Amino Acid Decarboxylase-Immunoreactive Structures in Human Midbrain, Pons, and Medulla,” Journal of Chemical Neuroanatomy, Vol. 38, No. 2, 2009, pp. 130-140. doi:10.1016/j.jchemneu.2009.06.010
[22] K. Ikemoto, “Significance of Human Striatal D-Neurons: Implications in Neuropsychiatric Functions,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, Vol. 28, No. 3, 2004, pp. 429-434. doi:10.1016/j.pnpbp.2003.11.017
[23] J. R. Bunzow, M. S. Sonders, S. Arttamangkul, L. M. Harrison, G. Zhang, D. I. Quigley, T. Darland, K. L. Suchland, S. Pasumamula, J. L. Kennedy, S. B. Olson, R. E. Magenis, S. G. Amara and D. K. Grandy, “Amphetamine, 3,4-Methylenedioxymethamphetamine, Lysergic Acid Diethylamide, and Metabolites of the Catecholamine Neurotransmitters Are Agonists of a Rat Trace Amine Receptor,” Molecular Pharmacology, 60, No. 6, 2001, pp. 1181-1188.
[24] B. Borowsky, N. Adham, K. A. Jones, R. Raddatz, R. Artymyshyn, K. L. Ogozalek, M. M. Durkin, P. P. Lakhlani, J. A. Bonini, S. Pathirana, N. Boyle, X. Pu, E. Kouranova, H. Lichtblau, F. Y. Ochoa, T. A. Branchek and C. Gerald, “Trace Amines: Identification of a Family of Mammalian G Protein-Coupled Receptors,” Proceedings of the National Academy of Sciences of USA, Vol. 98, No. 16, 2001, pp. 8966-8971. doi:10.1073/pnas.151105198
[25] G. M. Miller, “The Emerging Role of Trace Amine-Associated Receptor 1 in the Functional Regulation of Monoamine Transporters and Dopaminergic Activity,” Journal of Neurochemistry, Vol. 116, No. 2, 2011, pp. 164-176. doi:10.1111/j.1471-4159.2010.07109.x
[26] Z. Xie and G. M. Miller, “Trace Amine-Associated Receptor 1 Is a Modulator of the Dopamine Transporter,” Journal of Pharmacology and Experimental Therapeutics, Vol. 321, No. 1, 2007, pp. 128-136. doi:10.1124/jpet.106.117382
[27] Z. Xie and G. M. Miller, “Trace Amine-Associated Receptor 1 as a Monoaminergic Modulator in Brain,” Biochemical Pharmacology, Vol. 78, No. 9, 2009, pp. 1095-1104. doi:10.1016/j.bcp.2009.05.031
[28] L. Lindemann, C. A. Meyer, K. Jeanneau, A. Bradaia, L. Ozmen, H. Bluethmann, B. Bettler, J. G. Wettstein, E. Borroni, J. L. Moreau and M. C. Hoener, “Trace Amine-Associated Receptor 1 Modulates Dopaminergic Activity,” Journal of Pharmacology and Experimental Therapeutics, Vol. 324, No. 3, 2008, pp. 948-956. doi:10.1124/jpet.107.132647
[29] R. Zucchi, G. Chiellini, T. S. Scanlan and D. K. Grandy, “Trace Amine-Associated Receptors and Their Ligands,” British Journal of Pharmacology, Vol. 149, No. 8, 2006, 967-978. doi:10.1038/sj.bjp.0706948
[30] A. Bradaia, G. Trube, H. Stalder, R. D. Norcross, L. Ozmen, J. G. Wettstein, A. Pinard, D. Buchy, M. Gassmann, M. C. Hoener and B. Bettler, “The Selective Antagonist EPPTB Reveals TAAR1-Mediated Regulatory Mechanisms in Dopaminergic Neurons of the Mesolimbic System,” Proceedings of the National Academy of Sciences of USA, Vol. 106, No. 47, 2009, pp. 20081-20086.
[31] F. G. Revel, J. L. Moreau, R. R. Gainetdinov, A. Bradaia, T. D. Sotnikova, R. Mory, S. Durkin, K. G. Zbinden, R. Norcross, C. A. Meyer, V. Metzler, S. Chaboz, L. Ozmen, G. Trube, B. Pouzet, B. Bettler, M. G. Caron, J. G. Wettstein and M. C. Hoener, “TAAR1 Activation Modulates Monoaminergic Neurotransmission, Preventing Hyperdopaminergic and Hypoglutamatergic Activity,” Proceedings of the National Academy of Sciences of USA, Vol. 108, No. 20, 2011, pp. 8485-8490. doi:10.1073/pnas.1103029108
[32] T. D. Wolinsky, C. J. Swanson, K. E. Smith, H. Zhong, B. Borowsky, P. Seeman, T. Branchek and C. P. Gerald, “The Trace Amine 1 Receptor Knockout Mouse: An Animal Model with Relevance to Schizophrenia,” Genes, Brain and Behavior, Vol. 6, No. 7, 2007, pp. 628-639. doi:10.1111/j.1601-183X.2006.00292.x
[33] K. Ikemoto, “Striatal D-neurons: In New Viewpoints for Neuropsychiatric Research Using Post-Mortem Brains,” Fukushima Journal of Medical Science, Vol. 54, No. 1, 2008, pp. 1-3.
[34] A. Reif, S. Fritzen, M. Finger, A. Strobel, M. Lauer, A. Schmitt and K. P. Lesch, “Neural Stem Cell Proliferation Is Decreased in Schizophrenia, But Not in Depression,” Molecular Psychiatry, Vol. 11, 2006, pp. 514-522. doi:10.1038/sj.mp.4001791
[35] G. Degreef, M. Ashtari, B. Bogerts, R. M. Bilder, D. N. Jody, J. M. Alvir and J. A. Lieberman, “Volumes of Ventricular System Subdivisions Measured from Magnetic Resonance Images in First-Episode Schizophrenic Patients,” Archives of General Psychiatry, Vol. 49, No. 7, 1992, pp. 531-537. doi:10.1001/archpsyc.1992.01820070025004
[36] G. Horga, J. Bernacer, N. Dusi, J. Entis, K. Chu, E. A. Hazlett, M. M. Haznedar, E. Kemether, W. Byne and M. S. Buchsbaum, “Correlations between Ventricular Enlargement and Gray and White Matter Volumes of Cortex, Thalamus, Striatum, and Internal Capsule in Schizophrenia,” European Archives of Psychiatry and Clinical Neuroscience, 261, No. 7, 2011, pp. 467-476. doi:10.1007/s00406-011-0202-x
[37] T. E. Kippin, S. Kapur and D. van der Kooy, “Dopamine Specifically Inhibits Forebrain Neural Stem Cell Proliferation, Suggesting a Novel Effect of Antipsychotic Drugs,” Journal of Neuroscience, Vol. 25, No. 24, 2005, pp. 5815-5023. doi:10.1523/JNEUROSCI.1120-05.2005

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.