Microglia-conditioned medium promotes locomotor recovery and neuroprotection after rat spinal cord injury

Abstract

This work examines whether microglia-conditioned medium (MCM) is beneficial in stressed spinal cord cells or tissues. MCM was separated into two fractions by 50 kDa molecular cut-off centrifugation. MCM not only promoted survival of neuronal and oligodendroglial cells but effectively reduced LPS stimulation in spinal cord cultures. We further utilized the NYU weight-drop device to induce contusive spinal cord injury (SCI) in rats. Immediately after dropping the impactor from a height of 25 mm onto thoracic spinal segment, MCM was intrathecally administered. At 6 weeks post-injury, SCI rats receiving MCM > 50 kDa treatment showed significant hind-limb improvement over MCM < 50 kDa- or vehicle-treated SCI rats. Consistently, more preserved nerve fibers and fewer activated microglia were found in the injured epicenter of MCM-treated SCI rats. Taken together, secreted substances, mainly > 50 kDa, of microglia was neuroprotective against spinal cord injury.

Share and Cite:

Tsai, M. , Ho, P. , Lin, Y. , Huang, M. , Lee, M. , Liou, D. , Huang, W. , Fu, Y. and Cheng, H. (2012) Microglia-conditioned medium promotes locomotor recovery and neuroprotection after rat spinal cord injury. Advances in Bioscience and Biotechnology, 3, 524-530. doi: 10.4236/abb.2012.324069.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Aarum, J., Sandberg, K., Haeberlein, S.L. and Persson, M.A. (2003) Migration and differentiation of neural precursor cells can be directed by microglia. Proceedings of the National Academy of Sciences USA, 100, 15983-15988. doi:10.1073/pnas.2237050100
[2] Graeber, M.B., Blakemore, W.F. and Kreutzberg, G.W. (2002) Cellular pathology of the nervous system. In: Graham, D.I. and Lantos, P.L., Eds., Greenfield’s Neuropathology, 7th Edition, Hodder Arnold, London, 123-191.
[3] Shaked, I., Porat, Z., Gersner, R., Kipnis, J. and Schwartz, M. (2004) Early activation of microglia as antigen-presenting cells correlates with T cell-mediated protection and repair of the injured central nervous system. Journal of Neuro-immunology, 146, 84-93. doi:10.1016/j.jneuroim.2003.10.049
[4] Block, M.L. and Hong, J.S. (2007) Chronic microglial activation and progressive dopaminergic neurotoxicity. Biochemical Society Transactions, 35, 1127-1132. doi:10.1042/BST0351127
[5] Minghetti, L. (2005) Role of inflammation in neurodegenerative diseases. Current Opinion in Neurology, 18, 315-321. doi:10.1097/01.wco.0000169752.54191.97
[6] Kuo, H.S., Tsai, M.J., Huang, M.C., Huang, W.C., Lee, M.J., Kuo, W.C., You, L.H., Szeto, K.C., Tsai, I.L., Chang, W.C., Chiu, C.W., Ma, H., Chak, K.F. and Cheng, H. (2007) The combination of peripheral nerve grafts and acidic fibroblast growth factor enhances arginase I and polyamine spermine expression in transected rat spinal cords. Biochemical and Biophysical Research Communications, 357, 1-7. doi:10.1016/j.bbrc.2007.02.167
[7] Kuo, H.S., Tsai, M.J., Huang, M.C., Chiu, C.W., Tsai, C.Y., Lee, M.J., Huang, W.C., Lin, Y.L., Kuo, W.C. and Cheng, H. (2011) Acid fibroblast growth factor and peripheral nerve grafts regulate Th2 cytokine expression, macrophage activation, polyamine synthesis, and neurotrophin expression in transected rat spinal cords. Journal of Neuroscience, 31, 4137-4147. doi:10.1523/JNEUROSCI.2592-10.2011
[8] Popovich, P.G. and Hickey, W.F. (2001) Bone marrow chimeric rats reveal the unique distribution of resident and recruited macrophages in the contused rat spinal cord. Journal of Neuropathology & Experimental Neurology, 60, 676-685.
[9] Hung, H., Tsai, M.J., Wu, H.C. and Lee, E.H. (2000) Age-dependent increase in C7-1 gene expression in rat frontal cortex. Molecular Brain Research, 75, 330-336. doi:10.1016/S0169-328X(99)00325-3
[10] Tsai, M.J., Pan, H.A., Liou, D.Y., Weng, C.F., Hoffer, B.J. and Cheng, H. (2010) Adenoviral gene transfer of bone mor-phogenetic protein-7 enhances functional recovery after sciatic nerve injury in rats. Gene Therapy, 17, 1214- 1224. doi:10.1038/gt.2010.72
[11] Tsai, M.J., Liao, J.F., Lin, D.Y., Huang, M.C., Liou, D.Y., Yang, H.C., Lee, H.J., Chen, Y.T., Chi, C.W., Huang, W.C. and Cheng, H. (2010) Silymarin protects spinal cord and cortical cells against oxidative stress and lipopolysaccharide stimulation. Neurochemistry International, 57, 867- 875. doi:10.1016/j.neuint.2010.09.005
[12] Tsai, M.J., Weng, C.F., Shyue, S.K., Liou, D.Y., Chen, C.H., Chiu, C.W., Yang, T.H., Pan, H.A., Liao, R.I., Kuo, H.S., Huang, M.C., Huang, W.C., Hoffer, B.J. and Cheng, H. (2007) Dual effect of adenovirus-mediated transfer of BMP7 in mixed neuron-glial cultures: Neuroprotection and cellular differentiation. Journal of Neuroscience Research, 85, 2950-2959. doi:10.1002/jnr.21395
[13] Tsai, M.J. and Lee, E.H. (1994) Differences in the disposition and toxic-ity of 1-methyl-4-phenylpyridinium in cultured rat and mouse astrocytes. Glia, 12, 329-335. doi:10.1002/glia.440120409
[14] Tsai, M.J. and Lee, E.H. (1998) Nitric oxide donors protect cultured rat astrocytes from 1-methyl-4-phenylpy- ridinium-induced toxicity. Free Radical Biology and Medicine, 24, 705-713. doi:10.1016/S0891-5849(97)00329-8
[15] Cheng, H., Wu, J.P. and Tzeng, S.F. (2002) Neuroprotection of glial cell line-derived neurotrophic factor in damaged spinal cords following contusive injury. Journal of Neuroscience Research, 69, 397-405. doi:10.1002/jnr.10303
[16] Basso, D.M., Beattie, M.S. and Bresnahan, J.C. (1995) A sensitive and reliable lo-comotor rating scale for open field testing in rats. Journal of Neurotrauma, 12, 1-21. doi:10.1089/neu.1995.12.1
[17] Basso, D.M., Beattie, M.S. and Bresnahan, J.C. (1996) Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection. Experimental Neurology, 139, 244-256. doi:10.1006/exnr.1996.0098
[18] Pedraza, L., Fidler, L., Staugaitis, S.M. and Colman, D.R. (1997) The active transport of myelin basic protein into the nucleus suggests a regulatory role in myelination. Neuron, 18, 579-589. doi:10.1016/S0896-6273(00)80299-8
[19] Hickey, W.F. (1999) Leukocyte traffic in the central nervous system: The participants and their roles. Seminars in Immunology, 11, 125-137. doi:10.1006/smim.1999.0168
[20] Popovich, P.G., Wei, P. and Stokes, B.T. (1997) Cellular inflammatory response after spinal cord injury in Sprague-Dawley and Lewis rats. Journal of Comparative Neurology, 377, 443-464. doi:10.1002/(SICI)1096-9861(19970120)377:3<443::AID-CNE10>3.0.CO;2-S
[21] Imai, F., Suzuki, H., Oda, J., Ninomiya, T., Ono, K., Sano, H. and Sawada, M. (2007) Neuroprotective effect of exogenous microglia in global brain ischemia. Journal of Cerebral Blood Flow & Metabolism, 27, 488-500. doi:10.1038/sj.jcbfm.9600362
[22] Kim, B.J., Kim, M.J., Park, J.M., Lee, S.H., Kim, Y.J., Ryu, S., Kim, Y.H. and Yoon, B.W. (2009) Reduced neurogenesis after sup-pressed inflammation by minocycline in transient cerebral ischemia in rat. Journal of the Neurological Sciences, 279, 70-75. doi:10.1016/j.jns.2008.12.025
[23] Lalancette-Hebert, M., Gowing, G., Simard, A., Weng, Y.C. and Kriz, J. (2007) Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. Journal of Neu-roscience, 27, 2596-2605. doi:10.1523/JNEUROSCI.5360-06.2007
[24] Neumann, J., Gunzer, M., Gutzeit, H.O., Ullrich, O., Reymann, K.G. and Dinkel, K. (2006) Microglia provide neuroprotection after ischemia. FASEB Journal, 20, 714- 716.
[25] Yanagisawa, D., Kitamura, Y., Takata, K., Hide, I., Nakata, Y. and Taniguchi, T. (2008) Possible involve-ment of P2X7 receptor activation in microglial neuropro-tection against focal cerebral ischemia in rats. Biological and Pharmaceutical Bulletin, 31, 1121-1130. doi:10.1248/bpb.31.1121
[26] Yu, T.B., Cheng, Y.S., Zhao, P., Kou, D.W., Sun, K., Chen, B.H. and Wang, A.M. (2009) Immune therapy with cultured microglia grafting into the injured spinal cord promoting the recovery of rat’s hind limb motor function. Chinese Journal of Traumatology, 12, 291-295.
[27] Polazzi, E. and Contestabile, A. (2002) Reciprocal interactions between microglia and neurons: from survival to neuropathology. Reviews in the Neurosciences, 13, 221- 242. doi:10.1515/REVNEURO.2002.13.3.221
[28] Whitney, N.P., Eidem, T.M., Peng, H., Huang, Y. and Zheng, J.C. (2009) Inflammation mediates varying effects in neuro-genesis: Relevance to the pathogenesis of brain injury and neurodegenerative disorders. Journal of Neurochemistry, 108, 1343-1359. doi:10.1111/j.1471-4159.2009.05886.x
[29] Polazzi, E., Mengoni, I., Caprini, M., Pena-Altamira, E., Kurtys, E. and Monti, B. (2012) Copper-Zinc Superoxide Dismutase (SOD1) is released by microglial cells and confers neuroprotection against 6-OHDA neurotoxicity. Neurosignals, Published on Line First.
[30] Nakajima, K. and Kohsaka, S. (1994) Neurotrophic effects of plasminogen. Seikagaku, 66, 533-538.
[31] Hide, I., Tanaka, M., Inoue, A., Naka-jima, K., Kohsaka, S., Inoue, K. and Nakata, Y. (2000) Extracellular ATP triggers tumor necrosis factor-alpha release from rat microglia. Journal of Neurochemistry, 75, 965-972. doi:10.1046/j.1471-4159.2000.0750965.x
[32] Nakajima, K., Honda, S., Tohyama, Y., Imai, Y., Kohsaka, S. and Kurihara, T. (2001) Neurotrophin secretion from cultured microglia. Journal of Neuroscience Research, 65, 322-331. doi:10.1002/jnr.1157

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.