The genetic architecture of insecticide resistance within a natural population of Drosophila melanogaster

Abstract

The dynamics of genetic variation in susceptibility to insecticides within a natural population of Drosophila melanogaster (Meigen) at Katsunuma (Yamanashi Prefecture, Japan) was examined. Two resistance factors for three organophosphate insecticides (OPs), a resistant-type acetylcholinesterase (AChE) and a cytochrome P450 monooxygenase (cytochrome P450), have already been suggested to be involved within the Katsunuma population. In this study, genetic variances were estimated for susceptibility to other classes of chemicals than OPs, permethrin (a pyrethroid) and dichloro-diphenyl-trichloroethane (DDT; an organo-chlorine), which existed simultaneously with genetic variances for susceptibility to OPs. Analyses of variance for susceptibility to permethrin and DDT showed highly significant variation among isofemale lines from the Katsunuma population, and the genetic variances for susceptibility to each insecticide fluctuated differently during this period. The impacts of fluctuations of genetic variation in susceptibility to one class of insecticides on genetic variation in susceptibility to other classes of insecticides existing simultaneously within the natural population were discussed.

Share and Cite:

Miyo, T. (2012) The genetic architecture of insecticide resistance within a natural population of Drosophila melanogaster. Open Journal of Genetics, 2, 90-94. doi: 10.4236/ojgen.2012.22013.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Mullin, C.A. and Scott, J.G. (1992) Biomolecular basis for insecticide resistance: Classification and comparisons. In: Mullin, C.A. and Scott, J.G. Eds., Molecular Mechanisms of Insecticide Resistance, American Chemical Society, Washington DC, 1-13.
[2] Crow, J.F. (1957) Genetics of insect resistance to chemicals. Annual Review of Entomology, 2, 227-246. doi:10.1146/annurev.en.02.010157.001303
[3] Roush, R.T. and McKenzie, J.A. (1987) Ecological genetics of insecticide and acaricide resistance. Annual Review of Entomology, 32, 361-380. doi:10.1146/annurev.en.32.010187.002045
[4] Oakeshott, J.G., Horne, I., Sutherland, T.D. and Russell, R.J. (2003) The genomics of insecticide resistance. Genome Biology, 4, 202. doi:10.1186/gb-2003-4-1-202
[5] French-Constant, R.H., Daborn, P.J. and Le Goff, G. (2004) The genetics and genomics of insecticide resistance. Trends in Genetics, 20, 163-170. doi:10.1016/j.tig.2004.01.003
[6] Hemingway, J., Hawkes, N.J., McCarroll, L. and Ranson, H. (2004) The molecular basis of insecticide resistance in mosquitoes. Insect Biochemistry and Molecular Biology, 34, 653-665. doi:10.1016/j.ibmb.2004.03.018
[7] Li, X., Schuler, M.A. and Berenbaum, M.R. (2007) Molecular mechanisms of metabolic resistance to synthetic and natural xe-nobiotics. Annual Review of Entomology, 52, 231-253. doi:10.1146/annurev.ento.51.110104.151104
[8] Morton, R.A. (1993) Evolution of Drosophila insecticide resistance. Genome, 36, 1-7. doi:10.1139/g93-001
[9] Usherwood, P.N.R., Davies, T.G.E., Mellor, I.R., O’Reilly, A.O., Peng, F., Vais, H., Khambay, B.P.S., Field, L.M. and Williamson, M.S. (2007) Mutations in DIIS5 and the DIIS4-S5 linker of Drosophila melanogaster sodium channel define binding domains for pyrethroids and DDT. FEBS Letters, 581, 5485-5492. doi:10.1016/j.febslet.2007.10.057
[10] Fournier, D. (2005) Mutations of acetylcholinesterase which confer insecticide resistance in insect populations. Chemico-Biological Interactions, 157-158, 257-261. doi:10.1016/j.cbi.2005.10.040
[11] Perry, T., McKenzie, J.A. and Batterham, P. (2007) A D?6 knockout strain of Drosophila melanogaster confers a high level of resistance to spinosad. Insect Biochemistry and Molecular Biology, 37, 184-188. doi:10.1016/j.ibmb.2006.11.009
[12] Perry, T., Heckel, D.G., McKenzie, J.A. and Batterham, P. (2008) Mutations in D?1 or D?2 nicotinic acetylcholine receptor subunits can confer resistance to neonicotinoids in Drosophila melanogaster. Insect Biochemistry and Molecular Biology, 38, 520-528. doi:10.1016/j.ibmb.2007.12.007
[13] Miyo, T., Takamori, H., Kono, Y. and Oguma, Y. (2001) Genetic variation and correlations among responses to five insecticides within natural populations of Drosophila melanogaster (Diptera: Drosophilidae). Journal of Economic Entomology, 94, 223-232. doi:10.1603/0022-0493-94.1.223
[14] Miyo, T., Oguma, Y. and Charlesworth, B. (2006) Sea- sonal fluctuation in susceptibility to insecticides within natural populations of Drosophila melanogaster. II. Features of genetic variation in susceptibility to organo- phosphate insecticides within natural populations of D. melanogaster. Genes & Genetic Systems, 81, 273-285. doi:10.1266/ggs.81.273
[15] Miyo, T. and Oguma, Y. (2010) Contributions of three-site mutations in acetyl-cholinesterase and cytochrome P450 to genetic variation in susceptibility to organo-phosphate insecticides within a natural population of Dro-sophila melanogaster. Popula-tion Ecology, 52, 159-169. doi:10.1007/s10144-009-0157-1
[16] Miyo, T., Akai, S. and Oguma, Y. (2000) Seasonal fluctuation in susceptibility to insecticides within natural populations of Dro-sophila melanogaster: Empirical observations of fitness costs of insecticide resistance. Genes & Genetic Systems, 75, 97-104. doi:10.1266/ggs.75.97
[17] Mukai, T. (1964) The genetic structure of natural populations of Drosophila melanogaster. I. Spontaneous mutation rate of polygenes controlling viability. Genetics, 50, 1-19.
[18] Abbott, W.S. (1925) A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18, 265-267.
[19] David, J.R., Gibert, P., Legout, H., Pétavy, G., Capy, P. and Moreteau, B. (2005) Isofemale lines in Drosophila: An empirical approach to quantitative trait analysis in natural populations. Heredity, 94, 3-12. doi:10.1038/sj.hdy.6800562
[20] Takano, T., Kusakabe, S. and Mukai, T. (1987) The genetic structure of natural populations of Drosophila melanogaster. XX. Comparison of genotype-environment interaction in viability between a northern and a southern population. Genetics, 117, 245-254.
[21] Davies, T.G.E., Field, L.M., Usherwood, P.N.R. and Wil- liamson, M.S. (2007) DDT, pyrethrins, pyrethroids and insect sodium channels. IUBMB Life, 59, 151-162. doi:10.1080/15216540701352042
[22] Scott, J.G. (1999) Cytochromes P450 and insecticide resistance. Insect Biochemistry and Molecular Biology, 29, 757-777. doi:10.1016/S0965-1748(99)00038-7
[23] Miyo, T., Kono, Y. and Oguma, Y. (2002) Genetic basis of cross-resistance to three organophosphate insecticides in Drosophila melanogaster (Diptera: Drosophilidae). Journal of Economic Entomology, 95, 871-877. doi:10.1603/0022-0493-95.5.871
[24] Daborn, P.J., Yen, J.L., Bogwitz, M.R., Le Goff, G., Feil, E., Jeffers, S., Tijet, N., Perry, T., Heckel, D., Batterham, P., Feyereisen, R., Wilson, T.G. and French-Constant, R.H. (2002) A single P450 allele associated with insecticide resistance in Drosophila. Science, 297, 2253-2256. doi:10.1126/science.1074170
[25] Festucci-Buselli, R.A., Carvalho-Dias, A.S., de Oliveira- Andrade, M., Caix-eta-Nunes, C., Li, H.-M., Stuart, J.J., Muir, W., Scharf, M.E. and Pittendrigh, B.R. (2005) Expression of Cyp6g1 and Cyp12d1 in DDT resistant and susceptible strains of Drosophila melanogaster. Insect Molecular Biology, 14, 69-77. doi:10.1111/j.1365-2583.2005.00532.x
[26] Jou?en, N., Heckel, D.G., Haas, M., Schuphan, I. and Schmidt, B. (2008) Metabolism of imidacloprid and DDT by P450 CYP6G1 expressed in cell cultures of Nicotiana tabacum suggests detoxification of these insecticides in Cyp6g1-overexpressing strains of Drosophila melanogaster, leading to resistance. Pest Management Science, 64, 65-73.
[27] Pyke, F.M., Bogwitz, M.R., Perry, T., Monk, A., Batterham, P. and McKenzie, J.A. (2004) The genetic basis of resistance to diazinon in natural populations of Drosophila melanogaster. Genetica, 121, 13-24. doi:10.1023/B:GENE.0000019920.71944.2b
[28] Scott, J.G. and Kasai, S. (2004) Evolutionary plasticity of monooxygenase-mediated resistance. Pesticide Biochemistry and Physiology, 78, 171-178. doi:10.1016/j.pestbp.2004.01.002
[29] Miyo, T. (2011) Population model of fluctuations in organophosphate resistance of Drosophila melanogaster: Roles of a mutated acetylcholinesterase and a cytochrome P450. Russian Journal of Ecology, 42, 510-517. doi:10.1134/S1067413611060178
[30] Rinkevich, F.D., Hamm, R.L., Geden, C.J. and Scott, J.G. (2007) Dynam-ics of insecticide resistance alleles in house fly populations from New York and Florida. Insect Bio- chemistry and Molecular Biology, 37, 550-558. doi:10.1016/j.ibmb.2007.02.013
[31] Hardstone, M.C., Lazzaro, B.P. and Scott, J.G. (2009) The effect of three environmental conditions on the fit- ness of cytochrome P450 monooxygenase-mediated permethrin resistance in Culex pipiens quinquefasciatus. BMC Evolutionary Biology, 9, 42. doi:10.1186/1471-2148-9-42
[32] McCart, C. and ffrench-Constant, R.H. (2008) Dissecting the insecticide-resistance-associated cytochrome P450 gene Cyp6g1. Pest Management Science, 64, 639-645. doi:10.1002/ps.1567
[33] Coustau, C., Chevillon, C. and ffrench-Constant, R. (2000) Resistance to xenobiotics and parasites: Can we count the cost? Trends in Ecology and Evolution, 15, 378-383. doi:10.1016/S0169-5347(00)01929-7
[34] Gassmann, A.J., Carrière, Y. and Tabashnik, B.E. (2009) Fitness costs of insect resistance to Bacillus thuringiensis. Annual Review of Entomology, 54, 147-163. doi:10.1146/annurev.ento.54.110807.090518

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.