Analysis of Dynamics Fields in Noninertial Systems

Full-Text HTML XML Download Download as PDF (Size:830KB) PP. 175-180
DOI: 10.4236/wjm.2012.23021    4,089 Downloads   6,407 Views   Citations


In this paper, I present evidence that there exists an unstructured area in the present general assumptions of classical mechanics, especially in case of rigid bodies exposed to simultaneous noncoaxial rotations. To address this, I propose dynamics hypotheses that lead to interesting results and numerous noteworthy scientific and technological applications. I constructed a new mathematical model in rotational field dynamics, and through this model, results based on a rational interpretation of the superposition of motions caused by torques were obtained. For this purpose, I analyze velocity and acceleration fields that are generated in an object with intrinsic angular momentum, and assessed new criteria for coupling velocities. In this context, I will discuss reactions and inertial fields that cannot be explained by classical mechanics. The experiments have been analyzed and explained in a video accompanying this text. I am not aware of any concurrent study on the subject and conclusions evidenced in this paper, preventing us from making additional theoretical com- parisons or indicate to the reader other sources to compare criteria.

Cite this paper

G. Barceló, "Analysis of Dynamics Fields in Noninertial Systems," World Journal of Mechanics, Vol. 2 No. 3, 2012, pp. 175-180. doi: 10.4236/wjm.2012.23021.


[1] P. Appell, “Traité de Mécanique Rationnelle,” Gauthier-Villars, Paris, 1909
[2] I. Newton, “Principia,” Im. Du Chasteller, Paris, Proposition 2, 1757.
[3] G. Barceló, “El Vuelo del Bumerán,” Marcombo, Barcelona, 2006, p. 98.
[4] M. E. Jouffret, “Théorie élémentaire des Phénomènes que Présentent le Gyroscope, la Toupie et le Projectile Oblong,” Berger-Levrault, Extract Revue d′Artillerie, París, 1874.
[5] P. Gilbert, “Problème de la Rotation d’un Corps Solide Autour d’un Point,” Annales de la Société Scientifique de Bruxelles, 1876, p. 316.
[6] G. Barceló, “Un Mundo en Rotación,” Marcombo, Barcelona, 2008, p. 208.
[7] G. Bruhat, “Mécanique,” Masson & Cie, Paris, 1955.
[8] A. P. French, “Newtonian Mechanics (The M.I.T. Intro- ductory Physics Series),” W. W. Norton & Company, New York, 1971.
[9] L. D. Landau and E. M. Lifshitz, “Mechanic: Volume 1 (Course of Theoretical Physics),” 3rd Edition, Butterworth-Heinemann, Oxford, 1976,
[10] L. D. Landau and E. M. Lifshitz, “Mecánica,” Ed. S.A. Reverté, 1994, p. 24.
[11] E. Mach, “Die Mechanik in Ihrer Entwicklung Historisch-Kritisch Dargestellt,” Leipzig, Brockhaus, 1921.
[12] H. Goldstein, “Classical Mechanics,” Addison Wesley, Reading, 1994.
[13] L. Poinsot, “Théorie Nouvelle de la Rotation des Corps,” 1834.
[14] Gilbert, “Problème de la Rotation d’un Corps Solide Au- tor d’un Point Solide,” Annales de la Société Scientifique de Bruxelles, 1878, p. 258.
[15] G. Barceló, “El Vuelo del Bumerán,” Marcombo, Barcelona, 2006, p. 121.
[16] G. Barceló, “On the Equivalence Principle,” The 61st International Astronautical Congress, American Institute of Aeronautics and Astronautics, Prague, 27 September-1 October 2010.

comments powered by Disqus

Copyright © 2017 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.