Share This Article:

Analysis of Dynamics Fields in Noninertial Systems

Full-Text HTML XML Download Download as PDF (Size:830KB) PP. 175-180
DOI: 10.4236/wjm.2012.23021    4,974 Downloads   7,414 Views   Citations

ABSTRACT

In this paper, I present evidence that there exists an unstructured area in the present general assumptions of classical mechanics, especially in case of rigid bodies exposed to simultaneous noncoaxial rotations. To address this, I propose dynamics hypotheses that lead to interesting results and numerous noteworthy scientific and technological applications. I constructed a new mathematical model in rotational field dynamics, and through this model, results based on a rational interpretation of the superposition of motions caused by torques were obtained. For this purpose, I analyze velocity and acceleration fields that are generated in an object with intrinsic angular momentum, and assessed new criteria for coupling velocities. In this context, I will discuss reactions and inertial fields that cannot be explained by classical mechanics. The experiments have been analyzed and explained in a video accompanying this text. I am not aware of any concurrent study on the subject and conclusions evidenced in this paper, preventing us from making additional theoretical com- parisons or indicate to the reader other sources to compare criteria.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

G. Barceló, "Analysis of Dynamics Fields in Noninertial Systems," World Journal of Mechanics, Vol. 2 No. 3, 2012, pp. 175-180. doi: 10.4236/wjm.2012.23021.

References

[1] P. Appell, “Traité de Mécanique Rationnelle,” Gauthier-Villars, Paris, 1909
[2] I. Newton, “Principia,” Im. Du Chasteller, Paris, Proposition 2, 1757.
[3] G. Barceló, “El Vuelo del Bumerán,” Marcombo, Barcelona, 2006, p. 98.
[4] M. E. Jouffret, “Théorie élémentaire des Phénomènes que Présentent le Gyroscope, la Toupie et le Projectile Oblong,” Berger-Levrault, Extract Revue d′Artillerie, París, 1874.
[5] P. Gilbert, “Problème de la Rotation d’un Corps Solide Autour d’un Point,” Annales de la Société Scientifique de Bruxelles, 1876, p. 316.
[6] G. Barceló, “Un Mundo en Rotación,” Marcombo, Barcelona, 2008, p. 208.
[7] G. Bruhat, “Mécanique,” Masson & Cie, Paris, 1955.
[8] A. P. French, “Newtonian Mechanics (The M.I.T. Intro- ductory Physics Series),” W. W. Norton & Company, New York, 1971.
[9] L. D. Landau and E. M. Lifshitz, “Mechanic: Volume 1 (Course of Theoretical Physics),” 3rd Edition, Butterworth-Heinemann, Oxford, 1976,
[10] L. D. Landau and E. M. Lifshitz, “Mecánica,” Ed. S.A. Reverté, 1994, p. 24.
[11] E. Mach, “Die Mechanik in Ihrer Entwicklung Historisch-Kritisch Dargestellt,” Leipzig, Brockhaus, 1921.
[12] H. Goldstein, “Classical Mechanics,” Addison Wesley, Reading, 1994.
[13] L. Poinsot, “Théorie Nouvelle de la Rotation des Corps,” 1834.
[14] Gilbert, “Problème de la Rotation d’un Corps Solide Au- tor d’un Point Solide,” Annales de la Société Scientifique de Bruxelles, 1878, p. 258.
[15] G. Barceló, “El Vuelo del Bumerán,” Marcombo, Barcelona, 2006, p. 121.
[16] G. Barceló, “On the Equivalence Principle,” The 61st International Astronautical Congress, American Institute of Aeronautics and Astronautics, Prague, 27 September-1 October 2010.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.