Adrenocortical system activity in alloxan-resistant and alloxan-susceptible Wistar rats

Abstract

In the dynamics of the disease development, diuresis and glycosuria increase in alloxan-susceptible rats, while in alloxan-resistant rats the increase in the values of these indices is expressed to a lesser extent, and they begin to decrease by day 8 of the disease. In alloxan-susceptible rats, the mass index of adrenal gland is increased, and that of thymus is decreased and corticosterone concentration in blood, adrenal gland and urine as well as alanine and aspartate aminotransferase activities in liver are increased; in alloxan-resistant rats the values of these indices do not differ from those of rats of the control group.

Share and Cite:

G. Selyatitskaya, V. , A. Palchikova, N. and V. Kuznetsova, N. (2012) Adrenocortical system activity in alloxan-resistant and alloxan-susceptible Wistar rats. Journal of Diabetes Mellitus, 2, 165-169. doi: 10.4236/jdm.2012.22026.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Behr, G.A., da Silva, E.G., Ferreira, A.R., Cerski, C.T., Dal-Pizzol, F. and Moreira, J.C. (2008) Pancreas betacells morphology, liver antioxidant enzymes and liver oxidative parameters in alloxan-resistant and alloxansusceptible Wistar rats: A viable model system for the study of concepts into reactive oxygen species. Fundamental & Clinical Pharmacology, 22, 657-666. doi:10.1111/j.1472-8206.2008.00628.x
[2] Jain, D.K. and Arya, R.K. (2011) Anomalies in alloxaninduced diabetic model: It is better to standardize it first. Indian Journal of Pharmacology, 43, 91. doi:104103/0253-7613.75684.
[3] Mathews, C.E. and Leite, E.H. (1999) Constitutive differences in antioxidant defense status distinguish alloxanresistant and alloxan-susceptible mice. Free Radical Biology and Medicine, 27, 449-455. doi:10.1016/s.0891-5849(99)00084-2
[4] Mathews, C.E. and Leiter, E.H. (1999) Resistance of ALR/Lt islets to free radical-mediated diabetogenic stress is inherited as a dominant trait. Diabetes, 48, 2189-2196. doi:10.2337/diabetes.48.11.2189
[5] Lowy, C. and Williams, E.D. (1967) The pancreas and diabetes mellitus. Postgraduate Medical Journal, 43, 51-60. doi:10.1136/pgmj.43.495.51
[6] Chan, O., Inouye, K. and Riddell, M.C. (2003) Diabetes and hypothalamo-pituitary-adrenal (HPA) axis. Minerva Endocrinology, 28, 87-102.
[7] Selyatitskaya, V.G., Cherkasova, O.P., Pankina, T.V. and Palchikova, N.A. (2009) Functional state of adrenocortical system in rats with manifest alloxan-induced diabetes mellitus. Bulletin of Experimental Biology and Medicine, 146, 708-710. doi:10.1007/s10517-009-0393-6
[8] Palchikova, N.A., Selyatitskaya, V.G. and Shorin, Yu. P. (1987) Quantitative evaluation of the sensitivity of experimental animals to the diabetogenic effect of alloxan. Problemy Endokrinologii, 33, 65-68.
[9] Glantz, S. (1999) Primer of Biostatistics, Practica, Moscow.
[10] Sistare, F.D. and Haynes, R.C. Jr. (1985) Acute stimulation by glucocorticoids of gluconeogenesis from lactate/ pyruvate in isolated hepatocytes from normal and adrenalectomized rats. The Journal of Biological Chemistry, 260, 12754-12760.
[11] Agius, L., Chowdhury, M.H. and Alberti, K.G. (1986) Regulation of ketogenesis, gluconeogenesis and the mitochondrial redox state by dexamethasone in hepatocyte monolayer cultures. The Biochemical Journal, 239, 593-601.
[12] Yabaluri, N. and Bashyam, M.D. (2010) Hormonal regulation of gluconeogenic gene transcription in the liver. Journal of Biosciences, 35, 473-484. doi:10.1007/s12038-010-0052-0
[13] Horio, Y., Tanaka, T., Taketoshi, M., Uno, T. and Wada, H.J. (1988) Rat cytosolic aspartate aminotransferase: regulation of its mRNA and contribution to gluconeogenesis. Journal of Biochemistry, 103, 805-808.
[14] Anemaet, I.G., Meton, I., Salgado, M.C., Fernández, F. and Baanante, I.V. (2008) A novel alternatively spliced transcript of cytosolic alanine aminotransferase gene associated with enhanced gluconeogenesis in liver of Sparus aurata. The International Journal of Biochemistry & Cell Biology, 40, 2833-2844. doi:10.1016/j.biocel.2008.05.018
[15] Herold, M.J., McPherson, K.G. and Reichardt, H.M. (2006) Glucocorticoids in T cell apoptosis and function. Cellular and Molecular Life Sciences, 63, 60-72. doi:10.1007/s00018-005-5390-y
[16] Kelly, F.J., and Goldspink, D.F. (1984) Age-related growth and protein turnover in the thymus of normal and glucocorticoid-treated rats. European Journal of Biochemistry, 138, 623-627. doi:10.1111/j.1432-1033.1984.tb07960.x
[17] Lenzen S. (2008) The mechanisms of alloxanand streptozotocin-induced diabetes. Diabetologia, 51, 216-226. doi:10.1007/s00125-007-0886-7
[18] Grek, O.R., Efremov, A.V. and Grek, O.O. (2002) Hormone level and metabolism of xenobiotics in rats with various phenotype of resistance to hypoxia. Eksperimental’naia I Klinicheskaia Farmakologiia, 65, 53-55.
[19] Zakir’ianov, A.R., Plakhotnii, M.A., Onishchenko, N.A., Volodina, A.V., Klimenko, E.D., Kobozeva, L.P., Michuskaia, A.B. and Pozdniakov, O.M. (2007) Diabetic complications in rats in long-term modeling of type I diabetes mellitus. Patologicheskaia Fiziologiia I Eksperimental’naia Terapiia, 4, 21-25.
[20] Costa-Pinto, F.A. and Palermo-Neto, J. (2010) Neuroimmune interactions in stress. Neuroimmunomodulation, 17, 196-199. doi:10.1159/000258722

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.