In vivo Distribution of Inorganic Nanoparticles in Preclinical Models

Abstract

Ongoing progress in nanotechnologies has led to their implementation for in vivo diagnostic and therapy. Thus, the main applications of inorganic nanoparticles are imaging for diagnosis and cell tracking, photothermal and drug-delivery therapies. Following nanoparticles in vivo administration, the systemic circulation can distribute them to every body organ and tissue. Precise characterization of nanoparticles distribution and accumulation in the different body parts in preclinical models is required before any application in humans. The biodistribution of inorganic nanoparticles has been analysed in different preclinical models, particularly mouse, rat and rabbit. This review covers the in vivo biodistribution of different inorganic nanoparticles in preclinical models: gold nanoparticles, silica nanoparticles, iron oxide magnetic nanoparticles, quantum dots and carbon nanotubes.

Share and Cite:

M. Varna, P. Ratajczak, I. Ferreira, C. Leboeuf, G. Bousquet and A. Janin, "In vivo Distribution of Inorganic Nanoparticles in Preclinical Models," Journal of Biomaterials and Nanobiotechnology, Vol. 3 No. 2A, 2012, pp. 269-279. doi: 10.4236/jbnb.2012.322033.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] B. Chen, W. Wu and X. Wang, “Magnetic Iron Oxide Nanoparticles for Tumor-Targeted Therapy,” Current Cancer Drug Targets, Vol. 11, No. 2, 2011, pp. 184-189. doi:10.2174/156800911794328475
[2] C. S. Paulo, R. Pires das Neves and L. S. Ferreira, “Nanoparticles for Intracellular-Targeted Drug Delivery,” Nanotechnology, Vol. 22, No. 49, 2011, Article ID 494002. doi:10.1088/0957-4484/22/49/494002
[3] V. P. Torchi-lin, “Passive and Active Drug Targeting: Drug Delivery to Tumors as an Example,” Drug Delivery, Vol. 197, 2010, pp. 3-53. doi:10.1007/978-3-642-00477-3_1
[4] A. Agarwal, X. Shao, J. R. Rajian, H. Zhang, D. L. Chamberland, N. A. Kotov and X. Wang, “Dual-Mode Imaging with Radiolabeled Gold Nanorods,” Journal of Biomedical Optics, Vol. 16, No. 5, 2011, Article ID 051307. doi:10.1117/1.3580277
[5] D. A. Shah, S. J. Kwon, S. S. Bale, A. Banerjee, J. S. Dordick and R. S. Kane, “Regulation of Stem Cell Signaling by Nanoparticle-Mediated Intracellular Protein Delivery,” Biomaterials, Vol. 32, No. 12, 2011, pp. 3210- 3219. doi:10.1016/j.biomaterials.2010.11.077
[6] M. A. Hahn, A. K. Singh, P. Sharma, S. C. Brown and B. M. Moudgil, “Nanoparticles as Contrast Agents for In-Vivo Bioimaging: Current Status and Future Perspectives,” Analytical and Bioanalytical Chemistry, Vol. 399, No. 1, 2011, pp. 3-27. doi:10.1007/s00216-010-4207-5
[7] A. L. van de Ven, P. Kim, O. Haley, J. R. Fakhoury, G. Adriani, J. Schmulen, P. Moloney, F. Hussain, M. Ferrari, X. Liu, S. H. Yun and P. Decuzzi, “Rapid Tumoritropic Accumulation of Systemically Injected Plateloid Particles and Their Biodistribution,” Journal of Controlled Release, Vol. 158, No. 1, 2011, pp. 148-155. doi:10.1016/j.jconrel.2011.10.021
[8] H. C. Huang, S. Barua, G. Sharma, S. K. Dey and K. Rege, “Inorganic Nanoparticles for Cancer Imaging and Therapy,” Journal of Controlled Release, Vol. 155, No. 3, 2011, pp. 344-357. doi:10.1016/j.jconrel.2011.06.004
[9] J. V. Jokerst and S. S. Gambhir, “Molecular Imaging with Theranostic Nanoparticles,” Accounts of Chemical Research, Vol. 44, No. 10, 2011, pp. 1050-1060. doi:10.1021/ar200106e
[10] S. H. Radwan and H. M. Azzazy, “Gold Nanoparticles for Molecular Diagnostics,” Expert Review of Molecular Diagnostics, Vol. 9, No. 5, 2009, pp. 511-524. doi:10.1586/erm.09.33
[11] K. S. Park, J. Tae, B. Choi, Y. S. Kim, C. Moon, S. H. Kim, H. S. Lee, J. Kim, J. Park, J. H. Lee, J. E. Lee, J. W. Joh and S. Kim, “Characterization, in Vitro Cytotoxicity Assessment, and in Vivo Visualization of Multimodal, RITC-Labeled, Silica-Coated Magnetic Nanoparticles for Labeling Human Cord Blood-Derived Mesenchymal Stem Cells,” Nanomedicine, Vol. 6, No. 2, 2010, pp. 263- 276. doi:10.1016/j.nano.2009.07.005
[12] L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas and J. L. West, “Nano-shell-Mediated Near-Infrared Thermal Therapy of Tumors Under Magnetic Resonance Guidance,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 100, No. 23, 2003, pp. 13549-13554. doi:10.1073/pnas.2232479100
[13] C. Loo, L. Hirsch, M. H. Lee, E. Chang, J. West, N. Halas and R. Drezek, “Gold Nanoshell Bioconjugates for Molecular Imaging in Living Cells,” Optic Letters, Vol. 30, No. 9, 2005, pp. 1012-1014. doi:10.1364/OL.30.001012
[14] X. Huang, I. H. El-Sayed, W. Qian and M. A. El-Sayed, “Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods,” Journal of the Ameri-can Chemical Society, Vol. 128, No. 6, 2006, pp. 2115-2120. doi:10.1021/ja057254a
[15] W. Lu, M. P. Melancon, C. Xiong, Q. Huang, A. Elliott, S. Song, R. Zhang, L. G. Flores, 2nd, J. G. Gelovani, L. V. Wang, G. Ku, R. J. Stafford and C. Li, “Effects of Photoacoustic Imaging and Photothermal Ablation Therapy Mediated by Targeted Hollow Gold Nanospheres in an Orthotopic Mouse Xenograft Model of Glioma,” Cancer Research, Vol. 71, No. 19, 2011, pp. 6116-6121. doi:10.1158/0008-5472.CAN-10-4557
[16] S. D. Li and L. Huang, “Pharmacokinetics and Biodistribution of Na-noparticles,” Molecular Pharmaceutics, Vol. 5, No. 4, 2008, pp. 496-504. doi:10.1021/mp800049w
[17] H. Maeda, J. Wu, T. Sawa, Y. Matsumura and K. Hori, “Tumor Vascular Permeability and the EPR Effect in Macromolecular Therapeutics: A Review,” Journal of Controlled Release, Vol. 65, No. 1-2, 2000, pp. 271-284. doi:10.1016/S0168-3659(99)00248-5
[18] J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. Xia and X. Li, “Immuno Gold Nanocages with Tailored Optical Properties for Targeted Photothermal Destruction of Cancer Cells,” Nano Letters, Vol. 7, No. 5, 2007, pp. 1318-1322. doi:10.1021/nl070345g
[19] K. K. Jain, “Advances in the Field of Nanooncology,” BMC Medicine, Vol. 8, 2010, p. 83. doi:10.1186/1741-7015-8-83
[20] M. Hu, J. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. Li, M. Marquez and Y. Xia, “Gold Nanostructures: Engineering Their Plasmonic Properties for Biomedical Applications,” Chemical Society Reviews, Vol. 35, No. 11, 2006, pp. 1084-1094. doi:10.1039/b517615h
[21] E. I. Galanzha, M. S. Ko-koska, E. V. Shashkov, J. W. Kim, V. V. Tuchin and V. P. Zharov, “In Vivo Fiber-Based Multicolor Photoacoustic Detection and Photothermal Purging of Metastasis in Sentinel Lymph Nodes Targeted by Nanoparticles,” Journal of Biophotonics, Vol. 2, No. 8-9, 2009, pp. 528-539. doi:10.1002/jbio.200910046
[22] A. S. Thakor, J. Jokerst, C. Zavaleta, T. F. Massoud and S. S. Gambhir, “Gold Nanoparticles: A Revival in Precious Metal Administration to Patients,” Nano Letters, Vol. 11, No. 10, 2011, pp. 4029-4036. doi:10.1021/nl202559p
[23] L. Tong, Q. Wei, A. Wei and J. X. Cheng, “Gold Nanorods as Contrast Agents for Biological Imaging: Optical Properties, Surface Conjugation and Photothermal Effects,” Photochemistry and Photobiology, Vol. 85, No. 1, 2009, pp. 21-32. doi:10.1111/j.1751-1097.2008.00507.x
[24] Y. Akiyama, T. Mori, Y. Katayama and T. Niidome, “The Effects of PEG Grafting Level and Injection Dose on Gold Nanorod Biodistribution in the Tumor-Bearing Mice,” Journal of Controlled Release, Vol. 139, No. 1, 2009, pp. 81-84. doi:10.1016/j.jconrel.2009.06.006
[25] P. Diagaradjane, A. Shetty, J. C. Wang, A. M. Elliott, J. Schwartz, S. Shentu, H. C. Park, A. Deorukhkar, R. J. Stafford, S. H. Cho, J. W. Tunnell, J. D. Hazle and S. Krishnan, “Mod-ulation of in Vivo Tumor Radiation Response via Gold Nanoshell-Mediated Vascular-Focused Hyperthermia: Characterizing an Integrated Antihypoxic and Localized Vascular Disrupting Targeting Strategy,” Nano Letters, Vol. 8, No. 5, 2008, pp. 1492-1500. doi:10.1021/nl080496z
[26] X. Yang, A. Maurudis, J. Gamelin, A. Aguirre, Q. Zhu and L. V. Wang, “Photoac-oustic Tomography of Small Animal Brain with a Curved Array Transducer,” Journal of Biomedical Optics, Vol. 14, No. 5, 2009, Article ID 054007. doi:10.1117/1.3227035
[27] A. Agrawal, S. Huang, A. Wei Haw Lin, M. H. Lee, J. K. Barton, R. A. Drezek and T. J. Pfefer, “Quantitative Evaluation of Optical Coherence Tomography Signal Enhancement with Gold Nanoshells,” Journal of Biomedical Optics , Vol. 11, No. 4, 2006, Article ID 041121. doi:10.1117/1.2339071
[28] C. H. Su, H. S. Sheu, C. Y. Lin, C. C. Huang, Y. W. Lo, Y. C. Pu, J. C. Weng, D. B. Shieh, J. H. Chen and C. S. Yeh, “Nanoshell Magnetic Resonance Imaging Contrast Agents,” Journal of the American Chemical Society, Vol. 129, No. 7, 2007, pp. 2139-2146. doi:10.1021/ja0672066
[29] D. P. O'Neal, L. R. Hirsch, N. J. Halas, J. D. Payne and J. L. West, “Photo-Thermal Tumor Ablation in Mice Using near Infrared-Absorbing Nanoparticles,” Cancer Letters, Vol. 209, No. 2, 2004, pp. 171-176. doi:10.1016/j.canlet.2004.02.004
[30] G. F. Paciotti, L. Myer, D. Weinreich, D. Goia, N. Pavel, R. E. McLaughlin and L. Tamarkin, “Colloidal Gold: A Novel Nanoparticle Vector for Tumor Directed Drug Delivery,” Drug Delivery, Vol. 11, No. 3, 2004, pp. 169-183. doi:10.1080/10717540490433895
[31] T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama and Y. Niidome, “PEG-Modified Gold Nanorods with a Stealth Character for in Vivo Applications,” Journal of Controlled Release, Vol. 114, No. 3, 2006, pp. 343-347. doi:10.1016/j.jconrel.2006.06.017
[32] S. Manohar, C. Ungureanu and T. G. Van Leeuwen, “Gold Nanorods as Molecular Contrast Agents in Photoacoustic Imaging: The Promises and the Caveats,” Contrast Media Mol Imaging, Vol. 6, No. 5, 2011, pp. 389- 400. doi:10.1002/cmmi.454
[33] X. D. Zhang, D. Wu, X. Shen, P. X. Liu, N. Yang, B. Zhao, H. Zhang, Y. M. Sun, L. A. Zhang and F. Y. Fan, “Size-Dependent in Vivo Toxicity of PEG-Coated Gold Nanoparticles,” International Journal of Nanomedicine, Vol. 6, 2011, pp. 2071-2081. doi:10.2147/IJN.S21657
[34] C. Lasagna-Reeves, D. Gonzalez-Romero, M. A. Barria, I. Olmedo, A. Clos, V. M. Sadagopa Ramanujam, A. Urayama, L. Vergara, M. J. Kogan and C. Soto, “Bioaccumulation and Toxicity of Gold Nanoparticles after Repeated Administration in Mice,” Biochemical and Biophysical Research Communications, Vol. 393, No. 4, 2010, pp. 649-655. doi:10.1016/j.bbrc.2010.02.046
[35] W. H. De Jong, W. I. Hagens, P. Krystek, M. C. Burger, A. J. Sips and R. E. Geertsma, “Particle Size-Dependent Organ Distribution of Gold Nanoparticles after Intravenous Administration,” Biomaterials, Vol. 29, No. 12, 2008, pp. 1912-1919. doi:10.1016/j.biomaterials.2007.12.037
[36] G. Sonavane, K. Tomoda and K. Makino, “Biodistribution of Colloidal Gold Nanoparticles after Intravenous Administration: Effect of Particle Size,” Colloids Surf B Biointerfaces, Vol. 66, No. 2, 2008, pp. 274-280. doi:10.1016/j.colsurfb.2008.07.004
[37] J. H. Kim, K. W. Kim, M. H. Kim and Y. S. Yu, “Intravenously Adminis-tered Gold Nanoparticles Pass through the Blood-Retinal Barrier Depending on the Particle Size, and Induce No Retinal Toxicity,” Nanotechnology, Vol. 20, No. 50, 2009, Article ID 505101. doi:10.1088/0957-4484/20/50/505101
[38] K. H. Song, C. Kim, K. Maslov and L. V. Wang, “Noninvasive in Vivo Spectroscopic Nanorod-Contrast Photoacoustic Mapping of Sentinel Lymph Nodes,” European Journal of Radiology, Vol. 70, No. 2, 2009, pp. 227-231. doi:10.1016/j.ejrad.2009.01.045
[39] X. Yang, E. W. Stein, S. Ashkenazi and L. V. Wang, “Nanoparticles for Photoacoustic Imaging,” Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, Vol. 1, No. 4, 2009, pp. 360-368. doi:10.1002/wnan.42
[40] X. Wang, G. Ku, M. A. Wegiel, D. J. Bornhop, G. Stoica and L. V. Wang, “Nonin-vasive Photoacoustic Angiography of Animal Brains in Vivo with Near-Infrared Light and an Optical Contrast Agent,” Optic Letters, Vol. 29, No. 7, 2004, pp. 730-732. doi:10.1364/OL.29.000730
[41] X. Yang, S. E. Skrabalak, Z. Y. Li, Y. Xia and L. V. Wang, “Photoacoustic Tomography of a Rat Cerebral Cortex in Vivo with au Nanocages as an Optical Contrast Agent,” Nano Letters, Vol. 7, No. 12, 2007, pp. 3798- 3802. doi:10.1021/nl072349r
[42] H. Cui and X. Yang, “In Vivo Imaging and Treatment of Solid Tumor Using Integrated Photoacoustic Imaging and High Intensity Focused Ultrasound System,” Medical Physics, Vol. 37, No. 9, 2010, pp. 4777-4781. doi:10.1118/1.3480963
[43] J. Park, A. Estrada, K. Sharp, K. Sang, J. A. Schwartz, D. K. Smith, C. Coleman, J. D. Payne, B. A. Korgel, A. K. Dunn and J. W. Tunnell, “Two-Photon-Induced Photoluminescence Imaging of Tumors Using Near-Infrared Excited Gold Nanoshells,” Optics Express, Vol. 16, No. 3, 2008, pp. 1590-1599. doi:10.1364/OE.16.001590
[44] M. L. Li, J. C. Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica and L. V. Wang, “In-Vivo Photoacoustic Microscopy of Nanoshell Extravasation from Solid Tumor Vasculature,” Journal of Biomedical Optics, Vol. 14, No. 1, 2009, Article ID 010507. doi:10.1117/1.3081556
[45] G. Zhang, Z. Yang, W. Lu, R. Zhang, Q. Huang, M. Tian, L. Li, D. Liang and C. Li, “Influence of Anchoring Ligands and Particle Size on the Colloidal Stability and in Vivo Biodistribution of Polyethylene Glycol-Coated Gold Nanoparticles in Tumor-Xenografted Mice,” Biomaterials, Vol. 30, No. 10, 2009, pp. 1928-1936. doi:10.1016/j.biomaterials.2008.12.038
[46] N. Venkatesan, J. Yoshimitsu, Y. Ito, N. Shibata and K. Takada, “Liquid Filled Nanoparticles as a Drug Delivery Tool for Protein Therapeutics,” Biomaterials, Vol. 26, No. 34, 2005, pp. 7154-7163. doi:10.1016/j.biomaterials.2005.05.012
[47] J. Lu, Z. Li, J. I. Zink and F. Tamanoi, “In Vivo Tumor Suppression Efficacy of Mesoporous Silica Nanoparticles-Based Drug-Delivery System: Enhanced Efficacy by Folate Modification,” Nanomedicine, Vol. 8, No. 2, 2012, pp. 212-220. doi:10.1016/j.nano.2011.06.002
[48] M. R. Papasani, G. Wang and R. A. Hill, “Gold Nanoparticles: The Importance of Physiological Principles to Devise Strategies for Targeted Drug Delivery,” Nanomedicine: Nanotechnology, Biology and Medicine, 2012, Article in Press. doi:10.1016/j.nano.2012.01.008
[49] J. M. Rosenholm, V. Mamaeva, C. Sahlgren and M. Linden, “Nanoparticles in Targeted Cancer Therapy: Mesoporous Silica Nanoparticles Entering Preclinical Development Stage,” Nanomedicine (Lond), Vol. 7, No. 1, 2012, pp. 111-120. doi:10.2217/nnm.11.166
[50] R. P. Bagwe, L. R. Hilliard and W. Tan, “Surface Modification of Silica Nanoparticles to Reduce Aggregation and Nonspecific Binding,” Langmuir, Vol. 22, No. 9, 2006, pp. 4357-4362. doi:10.1021/la052797j
[51] P. F. Holmes, E. P. Currie, J. C. Thies, H. C. van der Mei, H. J. Busscher and W. Norde, “Surface-Modified Nanoparticles as a New, Versatile, and Mechanically Robust Nonadhesive Coating: Suppression of Protein Adsorption and Bacterial Adhesion,” Journal of Biomedical Materials Research Part A, Vol. 91, No. 3, 2009, pp. 824-833. doi:10.1002/jbm.a.32285
[52] J. M. Rosenholm, C. Sahlgren and M. Linden, “Towards Multifunctional, Targeted Drug Delivery Systems Using Mesoporous Silica Nanoparticles—Opportunities & Chal-lenges,” Nanoscale, Vol. 2, No. 10, 2010, pp. 1870-1883. doi:10.1039/c0nr00156b
[53] J. M. Rosenholm, E. Peuhu, J. E. Eriksson, C. Sahlgren and M. Linden, “Targeted Intracellular Delivery of Hydrophobic Agents Using Mesoporous Hybrid Silica Nanoparticles as Carrier Systems,” Nano Letters, Vol. 9, No. 9, 2009, pp. 3308-3311. doi:10.1021/nl901589y
[54] J. Kobler, K. Moller and T. Bein, “Colloidal Suspensions of Functionalized Meso-porous Silica Nanoparticles,” ACS Nano, Vol. 2, No. 4, 2008, pp. 791-799. doi:10.1021/nn700008s
[55] J. L. Vivero-Escoto, Slow-ing, II, B. G. Trewyn and V. S. Lin, “Mesoporous Silica Nanoparticles for Intracellular Controlled Drug Delivery,” Small, Vol. 6, No. 18, 2010, pp. 1952-1967. doi:10.1002/smll.200901789
[56] H. Nabeshi, T. Yoshikawa, K. Matsuyama, Y. Nakazato, K. Matsuo, A. Arimori, M. Isobe, S. Tochigi, S. Kondoh, T. Hirai, T. Akase, T. Yamashita, K. Yamashita, T. Yoshida, K. Nagano, Y. Abe, Y. Yoshioka, H. Kamada, T. Imazawa, N. Itoh, S. Nakagawa, T. Mayumi, S. Tsunoda and Y. Tsutsumi, “Systemic Distribution, Nuclear Entry and Cytotoxicity of Amorphous Nanosilica Following Topical Application,” Biomaterials, Vol. 32, No. 11, 2011, pp. 2713-2724. doi:10.1016/j.biomaterials.2010.12.042
[57] R. Kumar, I. Roy, T. Y. Ohulchanskky, L. A. Vathy, E. J. Bergey, M. Sajjad and P. N. Prasad, “In vivo biodistribution and clearance studies using multimodal organically modified silica nanoparticles,” ACS Nano, Vol. 4, No. 2, 2010, pp. 699-708. doi:10.1021/nn901146y
[58] X. He, H. Nie, K. Wang, W. Tan, X. Wu and P. Zhang, “In Vivo Study of Biodistribution and Urinary Excretion of Surface-Modified Silica Nanoparticles,” Analytical Chemistry, Vol. 80, No. 24, 2008, pp. 9597-9603. doi:10.1021/ac801882g
[59] H. Nabeshi, T. Yoshikawa, K. Matsuyama, Y. Nakazato, A. Arimori, M. Isobe, S. Tochigi, S. Kondoh, T. Hirai, T. Akase, T. Yamashita, K. Yamashita, T. Yoshida, K. Nagano, Y. Abe, Y. Yoshioka, H. Kamada, T. Imazawa, N. Itoh, S. Tsunoda and Y. Tsutsumi, “Size-Dependent Cytotoxic Effects of Amorphous Silica Nanoparticles on Langerhans Cells,” Pharmazie, Vol. 65, No. 3, 2010, pp. 199-201.
[60] J. Lu, M. Liong, Z. Li, J. I. Zink and F. Tamanoi, “Biocompatibility, Biodistribution, and Drug-Delivery Efficiency of Mesoporous Silica Nanoparticles for Cancer Therapy in Animals,” Small, Vol. 6, No. 16, 2010, pp. 1794-1805. doi:10.1002/smll.201000538
[61] T. H. Chung, S. H. Wu, M. Yao, C. W. Lu, Y. S. Lin, Y. Hung, C. Y. Mou, Y. C. Chen and D. M. Huang, “The Effect of Surface Charge on the Uptake and Biological Function of Mesoporous Silica Nanoparticles in 3T3-L1 Cells and Human Mesenchymal Stem Cells,” Biomaterials, Vol. 28, No. 19, 2007, pp. 2959-2966. doi:10.1016/j.biomaterials.2007.03.006
[62] C. Morelli, P. Maris, D. Sisci, E. Perrotta, E. Brunelli, I. Perrotta, M. L. Panno, A. Tagarelli, C. Versace, M. F. Casula, F. Testa, S. Ando, J. B. Nagy and L. Pasqua, “PEG-Templated Mesoporous Silica Nanoparticles Exclusively Target Cancer Cells,” Nanoscale, Vol. 3, No. 8, 2011, pp. 3198-3207. doi:10.1039/c1nr10253b
[63] D. Artemov, “Molecular Magnetic Resonance Imaging with Targeted Contrast Agents,” Journal of Cellular Biochemistry, Vol. 90, No. 3, 2003, pp. 518-524. doi:10.1002/jcb.10660
[64] T. Kobayashi, “Cancer Hyperthermia Using Magnetic Nanoparticles,” Biotechnology Journal, Vol. 6, No. 11, 2011, pp. 1342-1347. doi:10.1002/biot.201100045
[65] X. H. Peng, X. Qian, H. Mao, A. Y. Wang, Z. G. Chen, S. Nie and D. M. Shin, “Targeted Magnetic Iron Oxide Nanoparticles for Tumor Imaging and Therapy,” International Journal of Nanomedicine, Vol. 3, No. 3, 2008, pp. 311-321.
[66] C. Alexiou, R. Jurgons, R. J. Schmid, C. Bergemann, J. Henke, W. Erhardt, E. Huenges and F. Parak, “Magnetic Drug Targeting—Biodistribution of the Magnetic Carrier and the Chemotherapeutic Agent Mitoxantrone after Lo-coregional Cancer Treatment,” Journal of Drug Targeting, Vol. 11, No. 3, 2003, pp. 139-149. doi:10.3109/1061186031000150791
[67] K. Lind, M. Kresse, N. P. Debus and R. H. Muller, “A Novel Formulation for Superparamagnetic Iron Oxide (SPIO) Particles Enhancing MR Lymphography: Comparison of Physico-chemical Properties and the in Vivo Behaviour,” Journal of Drug Targeting, Vol. 10, No. 3, 2002, pp. 221-230. doi:10.1080/10611860290022651
[68] O. Veiseh, C. Sun, J. Gunn, N. Kohler, P. Gabikian, D. Lee, N. Bhattarai, R. Ellenbogen, R. Sze, A. Hallahan, J. Olson and M. Zhang, “Optical and MRI Multifunctional Nanoprobe for Targeting Gliomas,” Nano Letters, Vol. 5, No. 6, 2005, pp. 1003-1008. doi:10.1021/nl0502569
[69] M. Meng Lin, H. H. Kim, H. Kim, M. Muhammed and D. Kyung Kim, “Iron Oxide-Based Nanomagnets in Nanomedicine: Fabrication and Applications,” Nano Reviews, Vol. 1, 2010.
[70] C. E. Neumaier, G. Baio, S. Ferrini, G. Corte and A. Daga, “MR and Iron Magnetic Nanoparticles. Imaging Opportunities in Preclinical and Translational Research,” Tumori, Vol. 94, No. 2, 2008, pp. 226-233.
[71] V. I. Shubayev, T. R. Pisanic, 2nd and S. Jin, “Magnetic Nanoparticles for Theragnostics,” Advanced Drug Delivery Reviews, Vol. 61, No. 6, 2009, pp. 467-477. doi:10.1016/j.addr.2009.03.007
[72] A. J. Cole, A. E. David, J. Wang, C. J. Galban and V. C. Yang, “Magnetic Brain Tumor Targeting and Biodistribution of Long-Circulating PEG-Modified, Cross-Linked Starch-Coated Iron Oxide Nanoparticles,” Biomaterials, Vol. 32, No. 26, 2011, pp. 6291-6301.
[73] T. K. Jain, M. K. Reddy, M. A. Morales, D. L. Leslie-Pelecky and V. Labhasetwar, “Biodistribution, Clearance, and Biocompatibility of Iron Oxide Magnetic Nanoparticles in Rats,” Molecular Pharmaceutics, Vol. 5, No. 2, 2008, pp. 316-327. doi:10.1021/mp7001285
[74] E. K. Schlachter, H. R. Widmer, A. Bregy, T. Lonnfors-Weitzel, I. Vajtai, N. Corazza, V. J. Bernau, T. Weitzel, P. Mordasini, J. Slotboom, G. Herrmann, S. Bogni, H. Hofmann, M. Frenz and M. Reinert, “Metabolic Pathway and Distribution of Superparamagnetic Iron Oxide Nanoparticles: In Vivo Study,” International Journal of Nanomedicine, Vol. 6, 2011, pp. 1793-800.
[75] J. Feng, H. Liu, K. K. Bhakoo, L. Lu and Z. Chen, “A Metabonomic Analysis of Organ Specific Response to USPIO Administration,” Biomaterials, Vol. 32, No. 27, 2011, pp. 6558-6569. doi:10.1016/j.biomaterials.2011.05.035
[76] B. R. Smith, J. Heverhagen, M. Knopp, P. Schmalbrock, J. Shapiro, M. Shiomi, N. I. Moldovan, M. Ferrari and S. C. Lee, “Localization to Atherosclerotic Plaque and Biodistribution of Biochemically Derivatized Superparamagnetic Iron Oxide Nanoparticles (SPIONs) Contrast Particles for Magnetic Resonance Imaging (MRI),” Biomedical Microdevices, Vol. 9, No. 5, 2007, pp. 719-727. doi:10.1007/s10544-007-9081-3
[77] M. Kettering, H. Richter, F. Wiekhorst, S. Bremer-Streck, L. Trahms, W. A. Kaiser and I. Hilger, “Minimal-Inva- sive Magnetic Heating of Tumors Does Not Alter Intra-Tumoral Nano-particle Accumulation, Allowing for Repeated Therapy Sessions: An in Vivo Study in Mice,” Nanotechnology, Vol. 22, No. 50, 2011, Article ID 505102. doi:10.1088/0957-4484/22/50/505102
[78] A. Attaluri, R. Ma, Y. Qiu, W. Li and L. Zhu, “Nanoparticle Distribution and Temperature Elevations in Prostatic Tumours in Mice During Magnetic Nanoparticle Hyperthermia,” International Journal of Hyperthermia, Vol. 27, No. 5, 2011, pp. 491-502. doi:10.3109/02656736.2011.584856
[79] Q. Zhao, L. Wang, R. Cheng, L. Mao, R. D. Arnold, E. W. Howerth, Z. G. Chen and S. Platt, “Magnetic Nanoparticle-Based Hyperthermia for Head & Neck Cancer in Mouse Models,” Theranostics, Vol. 2, 2012, pp. 113-121. doi:10.7150/thno.3854
[80] G. P. Drummen, “Quantum Dots-From Synthesis to Applications in Biomedicine and Life Sciences,” International Journal of Molecular Science, Vol. 11, No. 1, 2010, pp. 154-163. doi:10.3390/ijms11010154
[81] M. Howarth, W. Liu, S. Puthenveetil, Y. Zheng, L. F. Marshall, M. M. Schmidt, K. D. Wittrup, M. G. Bawendi and A. Y. Ting, “Monovalent, Reduced-Size Quantum Dots for Imaging Receptors on Living Cells,” Nature Methods, Vol. 5, No. 5, 2008, pp. 397-399. doi:10.1038/nmeth.1206
[82] M. E. Akerman, W. C. Chan, P. Laakkonen, S. N. Bhatia and E. Ruoslahti, “Na-nocrystal Targeting in Vivo,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 99, No. 20, 2002, pp. 12617-12621. doi:10.1073/pnas.152463399
[83] S. Dwarakanath, J. G. Bruno, A. Shastry, T. Phillips, A. A. John, A. Kumar and L. D. Stephenson, “Quantum Dot- Antibody and Aptamer Conjugates Shift Fluorescence upon Binding Bacteria,” Biochemical and Biophysical Research Communications, Vol. 325, No. 3, 2004, pp. 739-743. doi:10.1016/j.bbrc.2004.10.099
[84] B. Ballou, B. C. Lagerholm, L. A. Ernst, M. P. Bruchez and A. S. Wag-goner, “Noninvasive Imaging of Quantum Dots in Mice,” Bioconjugate Chemistry, Vol. 15, No. 1, 2004, pp. 79-86. doi:10.1021/bc034153y
[85] J. L. Pelley, A. S. Daar and M. A. Saner, “State of Academic Knowledge on Toxicity and Biological Fate of Quantum Dots,” Toxicological Science, Vol. 112, No. 2, 2009, pp. 276-296. doi:10.1093/toxsci/kfp188
[86] H. S. Choi, W. Liu, P. Misra, E. Tanaka, J. P. Zimmer, B. Itty Ipe, M. G. Bawendi and J. V. Frangioni, “Renal Clearance of Quantum Dots,” Nature Biotechnology, Vol. 25, No. 10, 2007, pp. 1165-1170. doi:10.1038/nbt1340
[87] M. P. Waalkes, “Cadmium Carcinogenesis in Review,” Journal of Inorganic Biochemistry, Vol. 79, No. 1-4, 2000, pp. 241-244. doi:10.1016/S0162-0134(00)00009-X
[88] T. Gratieri, U. F. Schaefer, L. Jing, M. Gao, K. H. Kostka, R. F. Lopez and M. Schneider, “Penetration of Quantum Dot Particles through Human Skin,” Journal of Biomedical Nanotechnology, Vol. 6, No. 5, 2010, pp. 586-595. doi:10.1166/jbn.2010.1155
[89] C. A. Poland, R. Duffin, I. Kinloch, A. Maynard, W. A. Wallace, A. Seaton, V. Stone, S. Brown, W. Macnee and K. Donaldson, “Carbon Nanotubes Introduced into the Abdominal Cavity of Mice Show Asbestos-Like Pathogenicity in a Pilot Study,” Na-ture Nanotechnology, Vol. 3, No. 7, 2008, pp. 423-428. doi:10.1038/nnano.2008.111
[90] C. W. Lam, J. T. James, R. McCluskey, S. Arepalli and R. L. Hunter, “A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks,” Critical Review in Toxicology, Vol. 36, No. 3, 2006, pp. 189-217. doi:10.1080/10408440600570233
[91] R. S. Yang, L. W. Chang, J. P. Wu, M. H. Tsai, H. J. Wang, Y. C. Kuo, T. K. Yeh, C. S. Yang and P. Lin, “Persistent Tissue Kinetics and Redistribution of Nano- particles, Quantum Dot 705, in Mice: ICP-MS Quantitative Assessment,” Environmenatal Health Perspectives, Vol. 115, No. 9, 2007, pp. 1339-1343. doi:10.1289/ehp.10290
[92] Z. Liu, W. Cai, L. He, N. Nakayama, K. Chen, X. Sun, X. Chen and H. Dai, “In Vivo Biodistribution and Highly Efficient Tumour Targeting of Carbon Nanotubes in Mice,” Nature Nanotechnology, Vol. 2, No. 1, 2007, pp. 47-52. doi:10.1038/nnano.2006.170
[93] T. M. Saba, “Physiology and Physiopathology of the Reticuloendothelial System,” Archives of International Medicne, Vol. 126, No. 6, 1970, pp. 1031-152. doi:10.1001/archinte.1970.00310120093014
[94] R. Singh, D. Pantarotto, L. Lacerda, G. Pastorin, C. Klumpp, M. Prato, A. Bianco and K. Kostarelos, “Tissue Biodistribution and Blood Clearance Rates of Intravenously Administered Carbon Nanotube Radiotracers,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 103, No. 9, 2006, pp. 3357-3362. doi:10.1073/pnas.0509009103
[95] H. Wang, J. Wang, X. Deng, H. Sun, Z. Shi, Z. Gu, Y. Liu and Y. Zhao, “Biodistribution of Carbon Single-Wall Carbon Nanotubes in Mice,” Journal of Nanoscience and Nanotechnology, Vol. 4, No. 8, 2004, pp. 1019-1024. doi:10.1166/jnn.2004.146
[96] G. Prencipe, S. M. Ta-bakman, K. Welsher, Z. Liu, A. P. Goodwin, L. Zhang, J. Henry and H. Dai, “PEG Branched Polymer for Functionalization of Nanomaterials with Ultralong Blood Circulation,” Journal of the American Chemical Society, Vol. 131, No. 13, 2009, pp. 4783-4787. doi:10.1021/ja809086q
[97] A. Fraczek, E. Menaszek, C. Paluszkiewicz and M. Blazewicz, “Comparative in Vivo Biocompatibility Study of Single- and Multi-Wall Carbon Nanotubes,” Acta Biomaterialia, Vol. 4, No. 6, 2008, pp. 1593-1602. doi:10.1016/j.actbio.2008.05.018
[98] V. P. Zharov, E. I. Galanzha, E. V. Shashkov, J. W. Kim, N. G. Khlebtsov and V. V. Tuchin, “Photoacoustic Flow Cytometry: Principle and Application for Real-Time Detection of Circu-lating Single Nanoparticles, Pathogens, and Contrast Dyes in Vivo,” Journal of Biomedical Optics, Vol. 12, No. 5, 2007, Article ID 051503. doi:10.1117/1.2793746
[99] A. De la Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub and S. S. Gambhir, “Carbon Nanotubes as Photoacoustic Molecular Imaging Agents in Living Mice,” Nature Nanotechnology, Vol. 3, No. 9, 2008, pp. 557-562. doi:10.1038/nnano.2008.231
[100] A. de la Zerda, Z. Liu, S. Bodapati, R. Teed, S. Vaithilingam, B. T. Khuri-Yakub, X. Chen, H. Dai and S. S. Gambhir, “Ultrahigh Sensitivity Carbon Nanotube Agents for Photoacoustic Molecular Imaging in Living Mice,” Nano Letters, Vol. 10, No. 6, 2010, pp. 2168-2172. doi:10.1021/nl100890d
[101] E. I. Galanzha, E. V. Shashkov, T. Kelly, J. W. Kim, L. Yang and V. P. Zharov, “In Vivo Magnetic Enrichment and Multiplex Photoac-oustic Detection of Circulating Tumour Cells,” Nature Nanotechnology, Vol. 4, No. 12, 2009, pp. 855-860. doi:10.1038/nnano.2009.333
[102] J. W. Kim, E. I. Ga-lanzha, E. V. Shashkov, H. M. Moon and V. P. Zharov, “Golden Carbon Nanotubes as Multimodal Photoacoustic and Photothermal High-Contrast Molecular Agents,” Na-ture Nanotechnology, Vol. 4, No. 10, 2009, pp. 688-694. doi:10.1038/nnano.2009.231
[103] L. Xiang, Y. Yuan, D. Xing, Z. Ou, S. Yang and F. Zhou, “Photoacoustic Molecular Imaging with Antibody-Functionalized Single-Walled Carbon Nanotubes for Early Diagnosis of Tumor,” Journal of Biomedical Optics, Vol. 14, No. 2, 2009, Article ID 021008. doi:10.1117/1.3078809
[104] E. I. Galanzha, E. V. Shashkov, V. V. Tuchin and V. P. Zharov, “In Vivo Multispectral, Multiparameter, Photoacoustic Lymph Flow Cytometry with Natural Cell Focusing, Label-Free Detection and Multicolor Nanoparticle probes,” Cytometry A, Vol. 73, No. 10, 2008, pp. 884-894. doi:10.1002/cyto.a.20587
[105] M. Pramanik, M. Swierc-zewska, D. Green, B. Sitharaman and L. V. Wang, “Sin-gle-Walled Carbon Nanotubes as a Multimodal-Thermoacoustic and Photoacoustic-Contrast Agent,” Journal of Biomedical Optics, Vol. 14, No. 3, 2009, Article ID 034018. doi:10.1117/1.3147407
[106] E. V. Shashkov, E. I. Galanzha and V. P. Zharov, “Photothermal and Photoacoustic Raman Cytometry in Vitro and in Vivo,” Optics Express, Vol. 18, No. 7, 2010, pp. 6929-6944. doi:10.1364/OE.18.006929
[107] V. P. Zharov, E. N. Galitovskaya, C. Johnson and T. Kelly, “Synergistic Enhancement of Selective Nanophotothermolysis with Gold Nanoclusters: Potential for Cancer Therapy,” Lasers in Surgery and Medicine, Vol. 37, No. 3, 2005, pp. 219-226. doi:10.1002/lsm.20223
[108] V. P. Zharov, J. W. Kim, D. T. Curiel and M. Everts, “Self-Assembling Nanoclusters in Living Systems: Application for Integrated Photothermal Nanodiagnostics and Nanotherapy,” Nanomedicine, Vol. 1, No. 4, 2005, pp. 326-345. doi:10.1016/j.nano.2005.10.006
[109] N. W. Kam, M. O'Connell, J. A. Wisdom and H. Dai, “Carbon Nanotubes as Multifunctional Biological Transporters and Near-Infrared Agents for Selective Cancer Cell Destruction,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 102, No. 33, 2005, pp. 11600-11605. doi:10.1073/pnas.0502680102
[110] V. Pustovalov, L. Astafyeva and B. Jean, “Computer Modeling of the Optical Properties and Heating of Spherical Gold and Silica-Gold Nanoparticles for Laser Combined Imaging and Photothermal Treatment,” Nanotechnology, Vol. 20, No. 22, 2009, Article ID 225105. doi:10.1088/0957-4484/20/22/225105

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.