Stress prevention by modulation of autonomic nervous system (heart rate variability): A preliminary study using transcranial direct current stimulation

Abstract

Introduction: Transcranial Direct Current Stimulation (tDCS) is a non-invasive, technique for brain stimulation. Anodal stimulation causes neuronal depolarisation and long-term potentiation, while cathodal stimulation causes hyperpolarisation and long-term depression. Stressors are associated with an increase in sympathetic cardiac control, a decrease in parasympathetic control, or both. Associated with these reactions is a frequently reported increase in Low Frequency (LF) Heart Rate Variability (HRV), a decrease in High Frequency (HF) power, and/or an increase in the LF/HF ratio. Objectives and aims: The present work aims to explore the tDCS potential in the modulation of the Autonomic Nervous System (ANS), through indirect stimulation of Anterior Cingulate Cortex (ACC). Methods: Two subjects, a 39 year old female and a 49 year old male, gave informed consent. Saline soaked synthetic sponges involving two, thick, metalic (stainless steel) rectangles, with an area of 25 cm2 each have been used as electrodes, connected to Iomed Phoresor II Auto device. It has been delivered a 2 mA current, for 20 minutes, over the left Dorsolateral Prefrontal Cortex (DLPFC) (Anode). Spectrum analysis (cStress software) of HRV has been performed before and after tDCS administration. Results: The female/male subject results of LF power, HF power and LF/HF ratio, before tDCS administration, were, respectively: 50.1 nu/60 nu, 46.1 nu/21.7 nu and 1.087/2.771; and, after tDCS administration, respectively: 33.5 nu/52.7 nu, 47.6 nu/ 22.8 nu and 0.704/2.312. Conclusions: tDCS over the left DLPFC (left ACC) increased parasympathetic activity and decreased sympathetic activity, suggesting the importance of tDCS in the management of stress-related disorders.

Share and Cite:

Manuel Gonçalves, E. (2012) Stress prevention by modulation of autonomic nervous system (heart rate variability): A preliminary study using transcranial direct current stimulation. Open Journal of Psychiatry, 2, 113-122. doi: 10.4236/ojpsych.2012.22016.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Priori, A. (2003) Brain polarization in humans: A reappraisal of an old tool for prolonged non-invasive modulation of brain excitability. Clinical Neurophysiology, 114, 589-595. doi:10.1016/S1388-2457(02)00437-6
[2] Antal, A, Kincses, T.Z., Nitsche, M.A., Bartfai, O. and Paulus, W. (2004) Excitability changes induced in the human primary visual cortex by transcranial direct current stimulation: direct electrophysiological evidence. Investigative Ophthalmology & Visual Science, 45, 702-707. doi:10.1167/iovs.03-0688
[3] Antal, A., Nitsche, M.A. and Paulus, W. (2001) External modulation of visual perception in humans. Neuroreport, 12, 3553-3555. doi:10.1097/00001756-200111160-00036
[4] Antal, A., Nitsche, M.A., Kruse, W., et al. (2004) Direct current stimulation over V5 enhances visuo-motor coordination by improving motion perception in humans. Journal of Cognitive Neuroscience, 16, 521-527. doi:10.1162/089892904323057263
[5] Antal, A., Nitsche, M.A., Kincses, T.Z., et al. (2004) Facilitation of visuo-motor learning by transcranial direct current stimulation of the motor and extrastriate visual areas in humans. European Journal of Neuroscience, 19, 2888-2892. doi:10.1111/j.1460-9568.2004.03367.x
[6] Marshall, L., Molle, M., Hallsehmid, M. and Born, J. (2004) Transcranial direct current stimulation during sleep improves declarative memory. Journal of Neuroscience, 24, 9985-9992. doi:10.1523/JNEUROSCI.2725-04.2004
[7] Ragert, P., Vandermeeren, Y., Camus, M. and Cohen, L.G. (2008) Improvement of spatial tactile acuity by transcranial direct current stimulation. Clinical Neurophysiology, 119, 805-811. doi:10.1016/j.clinph.2007.12.001
[8] Monti, A., Cogiamanian, F., Marceglia, S., et al. (2008) Improved naming after trancranial direct current stimulation in aphasia. Journal of Neurology Neurosurgery & Psychiatry, 79, 451-453. doi:10.1136/jnnp.2007.135277
[9] Ferrucci, R., Mameli, F., Guidi, I., et al. (2008) Recognition memory in Alzheimer disease. Neurology, 34, 267-281.
[10] Floel, A., Rosser, N., Michka, O., Knecht, S., Breitenstein, C. (2008) Non-invasive brain stimulation improves language learning. Journal of Cognitive Neuroscience, 20, 1415-1422. doi:10.1162/jocn.2008.20098
[11] Sparing, R., Dafotakis, M. and Meister, I.G. Thirugnanasambandam, N. and Fink, G.R. (2008) Enhancing language performance with non-invasive brain stimulation—A transcranial direct current stimulation study in healthy humans. Neuropsychologia, 46, 261-268. doi:10.1016/j.neuropsychologia.2007.07.009
[12] Hummel, F.C., Celnik, P., Giraux, P., et al. (2005) Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain, 128, 490-499. doi:10.1093/brain/awh369
[13] Nitsche, M.A., Schauenburg, A., Lang, N., et al. (2003) Facilitation of implicit motor learning by weak transeranial direct current stimulation of the primary motor cortex in the human. Journal of Cognitive Neuroscience, 15, 619-626. doi:10.1162/089892903321662994
[14] Fregni, F., Boggio, P.S., Nitsche, M., et al. (2005) Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Experimental Brain Research, 166, 23-30. doi:10.1007/s00221-005-2334-6
[15] Boggio, P.S., Ferrucci, R., Rigonatti, S.P., et al. (2006) Effects of transcranial direct current stimulation on working memory in patients with Parkinson’s disease. Journal of the Neurological Science, 249, 31-38. doi:10.1016/j.jns.2006.05.062
[16] Ohn, S.H., Park, C.I., Yoo, W.K., et al. (2008) Timedependent effect of transcranial direct current stimulation on the enhancement of working memory. Neuroreport, 19, 43-47. doi:10.1097/WNR.0b013e3282f2adfd
[17] Roizenblatt, S., Fregni, F., Gimenez, R., et al. (2007) Site-specific effects or transcranial direct current stimulation on sleep and pain in fibromyalgia: A randomized, sharn-controlled study. Pain Practice, 7, 297-306. doi:10.1111/j.1533-2500.2007.00152.x
[18] Fregni, F., Boggio, P.S., Lima, M.C., et al. (2006) A sham-controlled, phase II trial of transcranial direct current stimulation for the treatment of central pain in traumatic spinal cord injury. Pain, 122, 197-209. doi:10.1016/j.pain.2006.02.023
[19] Antal, A., Brepohl, N., Poreisz, C., et al. (2008) Transcranial direct current stimulation over somatosensory cortex decreases experimentally induced acute pain perception. Clinical Journal of Pain, 24, 56-63. doi:10.1097/AJP.0b013e318157233b
[20] Antal, A., Lang, N., Boros, K., et al. (2008) Homeostatic metaplasticity of the motor cortex is altered during head- ache-free intervals in migraine with aura. Cereb Cortex, 18, 2701-2705. doi:10.1093/cercor/bhn032
[21] Chadaide, Z., Arlt, S., Antal, A., et al.(2007) Transcranial direct current stimulation reveals inhibitory deficiency in migraine. Cephalalgia, 27, 833-839. doi:10.1111/j.1468-2982.2007.01337.x
[22] Fregni, F., Girnenes, R., Valle, A.C., et al. (2006) A randomized, sham-controlled, proof of principle study of transcranial direct current stimulation for the treatment of pain in fibromyalgia. Arthritis & Rheumatism, 54, 3988-3998. doi:10.1002/art.22195
[23] Fecteau, S., Pascual-Leone, A., Zald, D.H., et al. (2007) Activation of prefrontal cortex by transcranial direct current stimulation reduces appetite for risk during ambiguous decision making. Journal of Neuroscience, 27, 6212-6218. doi:10.1523/JNEUROSCI.0314-07.2007
[24] Huey, E.D., Probasco, J.C., Moll, J., et al. (2007) No effect of DC brain polarization on verbal fluency in patients with advanced frontotemporal dementia. Clinical Neurophysiology, 118, 1417-1418. doi:10.1016/j.clinph.2007.02.026
[25] Boggio, P.S., Sultani, N., Fecteau, S., et al. (2008) Prefrontal cortex modulation using transcranial DC stimulation reduces alcohol craving: a double-blind, sham-controlled study. Drug Alcohol Dependence, 92, 55-60. doi:10.1016/j.drugalcdep.2007.06.011
[26] Fecteau, S., Knoch, O., Fregni, F., et al. (2007) Diminishing risk-taking behavior by modulating activity in the prefrontal cortex: A direct current stimulation study. Journal of Neuroscience, 27, 12500-12505. doi:10.1523/JNEUROSCI.3283-07.2007
[27] Fregni, F., Boggio, P.S., Nitsche, M.A., et al. (2006) Treatment of major depression with transcranial direct current stimulation. Bipolar Disorder, 8, 203-204. doi:10.1111/j.1399-5618.2006.00291.x
[28] Costain, R., Redfearn, J.W. and Lippold, O.C. (1964) A controlled trial of the therapeutic effect of polarization of the brain in depressive illness. British Journal of Psychiatry, 2, 786-799. doi:10.1192/bjp.110.469.786
[29] Carney, M.W. (1969) Negative polarization of the brain in the treatment of manic states. Irish Journal of Medical Sciences, 8, 133-135. doi:10.1007/BF02958921
[30] Bindman, L.J., Lippold, O.C.J. and Redfearn, J.W.T. (1964) The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects. Journal of Physiology, 172, 369-382.
[31] Purpura, D.P. and McMurtry, J.G. (1965) lntracellular activities and evoked potential changes during polarization of motor cortex. Journal of Neurophysiology, 28, 166-185.
[32] Nitsche, M.A. and Paulus, W. (2000) Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. Journal of Physiology, 527, 633-639. doi:10.1111/j.1469-7793.2000.t01-1-00633.x
[33] Iyer, M.B., Mattu, U., Grafrnan, J., et al. (2005) Safety and cognitive effect of frontal DC brain polarization in healthy individuals. Neurology, 64, 872-875. doi:10.1212/01.WNL.0000152986.07469.E9
[34] Nitsche, M.A. and Paulus, W. (2001) Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology, 57, 1899-1901.
[35] Nitsche, M.A., Nitsche, M.S., Klein, C.C., et al. (2003) Level of action of cathodal DC polarization induced inhibition of the human motor cortex. Clinical Neurophysiology, 114, 600-604. doi:10.1016/S1388-2457(02)00412-1
[36] Priori, A., Berardelli, A., Rona, S., Accornero, N. and Manfredi, M. (1998) Polarization of' the human motor cortex through the scalp. Neuroreport, 9, 2257-2260. doi:10.1097/00001756-199807130-00020
[37] Dundas, J.E., Thickbroom, G.W. and Mastaglia, F.L. (2007) Perception of cornfort during transcranial DC stimulation: Effect of NaCl solution concentration applied to sponge electrodes. Clinical Neurophysiology, 118, 1166-1170. doi:10.1016/j.clinph.2007.01.010
[38] Ardolino, G., Bossi, B., Barbieri, S. and Priori, A. (2005) Non-synaptic mechanisms underlie the after-effects of cathodal transcutaneous direct current stimulation of the human brain. Journal of Physiology, 568, 653-663. doi:10.1113/jphysiol.2005.088310
[39] Agnew, W.F. and McCreery, D.B. (1987) Considerations for safety in the use of extracranial stimulation for motor evoked potentials. Neurosurgery, 20, 143-147. doi:10.1097/00006123-198701000-00030
[40] Liebetanz, D., Klinker, F., Hering, D., et al. (2006) Anticonvulsant effects of transcranial direct current stimulation (tDCS) in the rat cortical ramp model of focal epilepsy. Epilepsia, 47, 1216-1224. doi:10.1111/j.1528-1167.2006.00539.x
[41] Malik, M. (1996) Heart rate variability. Circulation, 93, 1043-1065. doi:10.1161/01.CIR.93.5.1043
[42] Roberts, W. (2009) Heart rate variability with deep breathing as a clinical test of cardiovagal function. Cleveland Clinic Journal of Medicine, 76, S37-S40. doi:10.3949/ccjm.76.s2.08
[43] Shin, K., Minamitani, H., Onishi, S., Yamazaki, H. and Lee, M. (1997) Autonomic differences between athletes and nonathletes: Spectral analysis approach. Medicine & Science in Sports & Exercise, 29, 1482-1490. doi:10.1097/00005768-199711000-00015
[44] Akselrod, S., Gordon, D., Ubel, A., Shannon, C., Barger, C. and Cohen, J. (1981) Power spectrum analysis of heart rate fluctuation: A quantitative probe of beat-to-beat cardiovascular control. American Association for the Advancement of Science, 213, 220-222.
[45] Migliaro, R., Etxagibel, A., Castro, R., Ricca, R. and Vicente, K. (2001) Relative influence of age and sedentary life style in short-term analysis of heart rate variability. Brazilian Journal of Medical and Biological Research, 34, 493-500. doi:10.1590/S0100-879X2001000400009
[46] Bigger, J., Steinman, R., Rolnitzky, L., Fleiss, J., Albrecht, P. and Cohen, R. (1996) Power law behavior of RR-interval variability in healthy middle-aged persons, patients with recent acute myocardial infarction, and patients with heart transplants. Calculation, 93, 2142-2151.
[47] Mathew, M.B. and Pickering, T.G. (2011) The cardiovascular system, in the handbook of stress science: Psychology, medicine and health. Springer Publishing Company, Inc., New York, 37-45.
[48] Vogt, B.A. and Pandya, D.N. (1987) Cingulate cortex of the rhesus monkey: II. Cortical afferents. The Journal of Comparative Neurology, 262, 271-289. doi:10.1002/cne.902620208
[49] Petrides, M. and Pandya, D.N. (1999) Dorsolateral prefrontal cortex: Comparative cytoarchitectonic analysis in the human and the macaque brain and cortico-cortical connection patterns. European Journal of Neuroscience, 11, 1011-1036. doi:10.1046/j.1460-9568.1999.00518.x
[50] Koski, L. and Paus, T. (2000) Functional connectivity of the anterior cingulate cortex within the human frontal lobe: A brain-mapping meta-analysis. Experimental Brain Research, 133, 55-65. doi:10.1007/s002210000400
[51] Paus, T., Castro-Alamancos, M.A. and Petrides, M. (2001) Cortico-cortical connectivity of the human mid-dorsolateral frontal cortex and its modulation by repetitive transcranial magnetic stimulation. European Journal of Neuroscience, 14, 1405-1411. doi:10.1046/j.0953-816x.2001.01757.x
[52] Mayberg, H.S., Lozano, A.M., Voon, V., McNeely, H.E., Seminowicz, D., et al. (2005) Deep brain stimulation for treatment-resistant depression. Neuron, 45, 651-660. doi:10.1016/j.neuron.2005.02.014
[53] Hamani, C., Mayberg, H.S., Stone, S., Laxton, A., Haber, S. and Lozano, A.M. (2001) The subcallosal cingulate gyrus in the context ofmajor depression. Biological Psychiatry, 69, 301-309. doi:10.1016/j.biopsych.2010.09.034
[54] Critchley, H.D., Mathias, C.J., Josephs, O., O’Doherty, J., et al. (2003) Human cingulate cortex and autonomic control: Converging neuroimaging and clinical evidence. Brain, 126, 2139-2152. doi:10.1093/brain/awg216

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.