A Study on the Functional Reliability of Gravity Dam

Abstract

The research objective is to design and construct a method for functional reliability analysis of concrete gravity dam. Firstly, the pseudo excitation method was utilized to analyze to calculate the probabilistic characteristics of concrete gravity dam excited by random seismic loading. Meanwhile, the response surface method based on weighted regression was associated to that method to analyze functional reliability of concrete gravity dam. Eventually, a test example was given to verify and analyze the convergence and stability of this method.

Share and Cite:

Q. Xu, J. Chen and J. Li, "A Study on the Functional Reliability of Gravity Dam," Energy and Power Engineering, Vol. 4 No. 2, 2012, pp. 59-66. doi: 10.4236/epe.2012.42009.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Y. W Liu and F. Moses, “A Sequential Response Surface Method and Its Application in the Reliability Analysis of Aircraft Structural System,” Structural Safety, Vol. 16, No. 1-2, 1994, pp. 39-46. doi:10.1016/0167-4730(94)00023-J
[2] L. J. Moore and P. Sa, “Comparisons with the Best in Response Surface Methodology,” Statistics & Probability, Vol. 44, No. 2, 1999, pp. 189-194.
[3] Y. Zheng and P. K. Das, “Improved Response Surface Method and Its Application to Stiffened Plate Reliability Analysis,” Engineering Structures, Vol. 22, No. 5, 2000, pp. 544-551. doi:10.1016/S0141-0296(98)00136-9
[4] X. L. Guan and R. E. Melchers, “Effect of Response Surface Parameter Variation on Structural Reliability Estimates,” Structural Safety, Vol. 23, No. 4, 2001, pp. 429-444. doi:10.1016/S0167-4730(02)00013-9
[5] B. D. Youn, K. K. Choi, “A New Response Surface Methodology for Reliability-Based Design Optimization,” Computers and Structures, Vol. 82, No. 2-3, 2004, pp. 241- 256. doi:10.1016/j.compstruc.2003.09.002
[6] S. Gupta and C. S. Manohar, “Improved Response Surface Method for Time Variant Reliability Analysis of Nonlinear Random Structures under Non-Stationary Excitations,” Nonlinear Dynamics, Vol. 36, No. 2-4, 2004, pp. 267-280. doi:10.1023/B:NODY.0000045519.49715.93
[7] H. M. Gomes and A. M. Awruch, “Comparison of Response Surface and Neural Network with Other Methods for Structural Reliability Analysis,” Structural Safety, Vol. 26, No. 1, 2004, pp. 49-67. doi:10.1016/S0167-4730(03)00022-5
[8] I. Kaymaz and C. A. McMahon, “A Response Surface Method Based on Weighted Regression for Structural Reliability Analysis,” Probabilistic Engineering Mechanics, Vol. 20, No. 1, 2005, pp. 11-17. doi:10.1016/j.probengmech.2004.05.005
[9] S. M. Wong, R. E. Hobbs and C. Onof, “An Adaptive Response Surface Method for Reliability Analysis of Structures with Multiple Loading Sequences,” Structural Safety, Vol. 27, No. 4, 2005, pp. 287-308. doi:10.1016/j.strusafe.2005.02.001
[10] J. Q. Jiang, C. G. Wu, C. Y. Song, et al., “Adaptive and Iterative Gene Selection Based on Least Squares Support Vector Regression,” Journal of Information & Computational Science, Vol. 3, 2006, pp. 443-451. doi:10.1109/GRC.2008.4664732
[11] W.-L. Jin and X.-X. Yuan, “Response Surface Method Based on LS-SVM for Structural Reliability Analysis,” Journal of Zhejiang University (Engineering Science), Vol. 41, No. 1, 2007, pp. 44-47.
[12] M. S. Chebbah, “Response Surface Method for the Rapid Design of Process Parameters in Tube Hydroforming,” Material Processing and Design, Vol. 7, 2007, pp. 455-460. doi:10.1063/1.2740853
[13] J. Cheng, Q. S. Li and R.-C. Xiao, “A New Arti?cial Neural Network-Based Response Surface Method for Structural Reliability Analysis,” Probabilistic Engineering Mechanics, Vol. 23, No. 1, 2008, pp. 51-63. doi:10.1016/j.probengmech.2007.10.003
[14] H. P. Gavin and S. C. Yau, “High-Order Limit State Functions in the Response Surface Method for Structural Reliability Analysis,” Structural Safety, Vol. 30, No. 2, 2008, pp. 162-179. doi:10.1016/j.strusafe.2006.10.003
[15] T. Zou, Z. P. Mourelatos, Z. P. Mourelatos and J. Tu, “An Indicator Response Surface Method for Simulation-Based Reliability Analysis,” Journal of Mechanical Design, Vol. 130, No. 7, 2008, pp. 1-11. doi:10.1115/1.2918901
[16] X. S. Nguyen, A. Sellier, F. Duprat and G. Pons, “Adaptive Response Surface Method Based on a Double Weighted Regression Technique,” Probabilistic Engineering Mechanics, Vol. 24, No. 2, 2009, pp. 135-143. doi:10.1016/j.probengmech.2008.04.001
[17] Y. J. Hong, J. Xing and J. B. Wang, “A Second-Order Third-Moment Method for Calculating the Reliability of Fatigue,” International Journal of Pressure Vessels and Piping, Vol. 76, No. 8, 1999, pp. 567-570. http://dx.doi.org/10.1016/S0308-0161(99)00013-7
[18] A. Der Kiureghian and T. Dakessian, “Multiple Design Points in First and Second-Order Reliability,” Structural Safety, Vol. 20, No. 1, 1998, pp. 37-49. doi:10.1016/S0167-4730(97)00026-X
[19] H. U. Koyluoglu and S. R. K. Nielsen, “New Approximations for SORM Integrals,” Structural Safety, Vol. 13, No. 4, 1994, pp. 235-246. doi:10.1016/0167-4730(94)90031-0
[20] C. C. Qiu and M. E. Orazem, “A Weighted Nonlinear Regression-Based Inverse Model for Interpretation of Pipeline Survey Data,” Electrochimica Acta, Vol. 49, No. 22-23, 2004, pp. 3965-3975. http://dx.doi.org/10.1016/j.electacta.2004.03.045
[21] K. Triantafyllopoulos, “Multivariate Discount Weighted Regression and Local Level Models,” Computational Statistics & Data Analysis, Vol. 50, No. 12, 2006, pp. 3702- 3720. doi:10.1016/j.csda.2005.07.003
[22] J. Zhao and Z. Z. Lu, “Response Surface Method for Reliability Analysis of Implicit Limit State Equation Based on Weighted Regression,” Journal of Mechanical Strength, Vol. 28, No. 4, 2006, pp. 512-516.
[23] A. D. Kiureghian and A. Neuenhofer, “Response Spectrum Method for Muti-Support Seismic Excitation,” Earthquake Engineering & Structural Dynamics, Vol. 21, No. 1, 1992, pp. 713-740. doi:10.1002/eqe.4290210805/abstract
[24] H. Z. Ernesto and E. H Vanmarcke, “Seismic Random Vibration Analysis of Multi-Support Structural Systems,” Journal of Engineering Mechanics, Vol. 120, No. 5, 1994, pp. 1107-1128. doi:10.1061/(ASCE)0733-9399(1994)120:5(1107)
[25] J. H. Lin, “A Fast CQC Algorithm of PSD Matrices for Random Seismic Responses,” Computers & Structures, Vol. 44, No. 3, 1992, pp. 683-687. doi:10.1016/0045-7949(92)90401-K
[26] J. H. Lin, W. P. Shen and F. W. Williams, “Accurate High- Speed Computation of Non-Stationary Random Structural Response,” Engineering Structures, Vol. 19, No. 7, 1997, pp. 586-593. doi:10.1016/S0141-0296(97)83154-9
[27] J. H. Lin, X. L. Guo, H. Zhi, W. P. Howson and F. W. Williams, “Computer Simulation of Structural Random Loading Identifcation,” Computers and Structures, Vol. 79, No. 4, 2001, pp. 375-387. doi:10.1016/S0045-7949(00)00154-1
[28] J. H. Lin, Y. Zhao and Y. H. Zhang, “Accurate and Highly Efficient Algorithms for Structural Stationary/Non-Stationary Random Responses,” Computer Methods in Applied Mechanics and Engineering, Vol. 191, No. 1-2, 2001, pp. 103-111. doi:10.1016/S0045-7825(01)00247-X
[29] J. H. Lin, Y. H. Zhang, Q. S. Li and F. W. Williams, “Seismic Spatial Effects for Long-Span Bridges, Using the Pseudo Excitation Method,” Engineering Structures, Vol. 26, No. 9, 2004, pp. 1207-1216. doi:10.1016/j.engstruct.2004.03.019
[30] J. H. Lin, G. Z. Song and Y. Sun, “Non-Stationary Random Seismic Responses of Non-Uniform Beams,” Soil Dynamics and Earthquake Engineering, Vol. 14, No. 4, 1995, pp. 301-306. doi:10.1016/0267-7261(94)00030-K
[31] Y. L. Xu, D. K. Sun, J. M. Ko and J. H. Lin, “Buffeting Analysis of Long Span Bridges: A New Algorithm,” Computers and Structures, Vol. 68, No. 4, 1998, pp. 303- 313. doi:10.1016/S0045-7949(98)00072-8
[32] Y. L. Xu, D. K. Sun, J. M. Ko and J. H. Lin, “Fully Coupled Buffeting Analysis of Tsing Ma Suspension Bridge,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 85, No. 1, 2000, pp. 97-117. doi:10.1016/S0167-6105(99)00133-6
[33] Y. L. Xu, W. S. Zhang, J. M. Ko and J. H. Lin, “Pseudo- Excitation Method for Vibration Analysis of Wind-Excited Structures,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 83, No. 1-3, 1999, pp. 443-454. doi:10.1016/S0167-6105(99)00092-6
[34] Y. L. Xu and W. S. Zhang, “Closed-Form Solution for Seismic Response of Adjacent Buildings with Linear Quadratic Gaussian Controllers,” Earthquake Engineering & Structural Dynamics, Vol. 31, No. 2, 2002, pp. 235-259. doi:10.1002/eqe.107
[35] Y. L. Xu, Q. He and J. M. Ko, “Dynamic Response of Damper-Connected Adjacent Buildings under Earthquake Excitation,” Engineering Structures, Vol. 21, No.1, 1999, pp. 135-148. doi:10.1016/S0141-0296(97)00154-5
[36] W. S. Zhang and Y. L. Xu, “Dynamic Characteristics and Seismic Response of Adjacent Buildings Linked by Discrete Dampers,” Earthquake Engineering & Structural Dynamics, Vol. 28, No. 10, 1999, pp. 1163-1185. doi:/10.1002/(SICI)1096-9845(199910)28:10<1163::AID-EQE860>3.0.CO;2-0
[37] D. K. Sun, Y. L. Xu, J. M. Ko and J. H. Lin, “Fully Coupled Buffeting Analysis of Long-Span Cable-Supported Bridges: Formulation,” Journal of Sound and Vibration, Vol. 228, No. 3, 1999, pp. 569-588. doi:10.1006/jsvi.1999.2425
[38] Q. S. Li, Y. H. Zhang, J. R. Wua and J. H. Lin, “Seismic Random Vibration Analysis of Tall Buildings,” Engineering Structures, Vol. 26, No. 12, 2004, pp. 1767-1778. doi:10.1016/j.engstruct.2004.06.013
[39] S. D. Xue, Z. Cao and X. S. Wang, “Random Vibration Study of Structures under Multi-Component Seismic Excitations,” Advances in Structural Engineering, Vol. 5, No. 3, 2002, pp. 185-192. doi:10.1260/136943302760228130
[40] J. Li and S. T. Liao, “Response Analysis of Stochastic Parameter Structures under Non-Stationary Random Excitation,” Computational Mechanics, Vol. 27, No. 1, 2001, pp. 61-68. doi:10.1007/s004660000214
[41] J. Y. Chen, Q. Xu, J. Li and S. L. Fan, “Improved Response Surface Method for Anti-Slide Reliability Analysis of Gravity Dam Based on Weighted Regression,” Journal of Zhejiang University—Science A (Applied Physics & Engineering), Vol. 11, No. 6, 2010, pp. 432- 439. doi:10.1631/jzus.A0900709

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.