NM> Vol.3 No.1, March 2012
Views: 2,545    Downloads: 704

Serotonin 2C Receptor Alternative Splicing in a Rat Model of Orofacial Neuropathic Pain

DownloadDownload as PDF (Size:458KB) Full-Text HTML PP. 69-74   DOI: 10.4236/nm.2012.31011


Abnormal serotonin 2C receptor (5HTR2C) alternative splicing and RNA editing are involved in the etiology of pain disorders. Functional 5HTR2C can only be generated when alternative exon Vb is included within the mRNA; the small nucleolar RNA RBII-52 is complementary to exon Vb and promotes its inclusion. The expression of HBII-52 (the human equivalent of RBII-52) is reduced in Prader-Willi syndrome, patients of which have a high pain threshold. Here, we measured the pain threshold in a rat model of orofacial neuropathic pain and related it to the expression levels of wild-type and variant 5HTR2C and RBII-52. We generated an infraorbital nerve loose ligation model of neuropathic pain in rats and measured the pain threshold of the animals using mechanical stimulation with von Frey filaments. We then sacrificed the animals and examined the RNA levels of 5HTR2C and RBII-52 in the cervical spinal cord by real-time PCR. On post-injury day 28, pain threshold values in injured rats were significantly lower than in sham-operated or na?ve animals. The levels of total and exon Vb-skipped 5HTR2C mRNA were significantly lower in injured rats than in that sham-operated or na?ve rats, and the ratio of exon Vb-skipped 5HTR2C to total 5HTR2C was significantly higher. There were no significant differences in RBII-52 expression among the groups. Our data suggest that neuropathic pain induces serotonergic dysfunction mediated by 5HTR2C alternative splicing. 5HTR2C might be subject to complicated and fine regulation both by RNA editing and by alternative splicing.


Cite this paper

A. Nakae, K. Nakai, T. Tanaka, K. Hosokawa and T. Mashimo, "Serotonin 2C Receptor Alternative Splicing in a Rat Model of Orofacial Neuropathic Pain," Neuroscience & Medicine, Vol. 3 No. 1, 2012, pp. 69-74. doi: 10.4236/nm.2012.31011.


[1] S. B. Assidy and D. J. Driscoll, “Prader-Willi Syndrome,” European Journal of Human Genetics, Vol. 17, No. 1, 2009, pp. 3-13. doi:10.1038/ejhg.2008.165
[2] R. D. Nicholls, S. Sautoh and B. Horsthemke, “Imprinting in Prader-Willi and Angelman Syndromes,” Trends in Genetics, Vol. 14, No. 5, 1998, pp. 194-200. doi:10.1016/S0168-9525(98)01432-2
[3] M. S. Wil-liams, B. L. Rooney, J. Williams, K. Josephson and R. Pauli, “Investigation of Thermoregulatory Characteristics in Patients with Prader-Willi Syndrome,” American Journal of Medical Genetics, Vol. 49, No. 3, 1994, pp. 302-307. doi:10.1002/ajmg.1320490312
[4] L. Priano, G. Miscio, G. Grugni, E. Milano, S. Baudo, L. Sellitti, R. Picconi and A. Mauro, “On the Origin of Sensory Impairment and Altered Pain Perception in Prader-Willi Syndrome: A Nuerological Study,” European Journal of Pain, Vol. 13, No. 8, pp. 829-835. doi:10.1016/j.ejpain.2008.09.011
[5] V. A. Holm, S. B. Cassidy, M. G. Butler, J. M. Hanchett, L. R. Greenswag, B. Y. Whitman and F. Greenberg, “Prader-Willi Syndrome: Consensus Diagnostic Criteria,” Pediatrics, Vol. 91, No. 2, 1993, pp. 398-402
[6] S. Stahl and M. Briley, “Understanding Pain in Depression,” Human Psychopharmacology, No. S1, 2004, pp. S19- S13.
[7] A. I. Basbaum and H. L. Fields, “Endogenous Pain Control Systems: Brainstem Spinal Pathways and Endorphin Circuitry,” Annual Review of Neuroscience, Vol. 7, 1984, pp. 309-338. doi:10.1146/annurev.ne.07.030184.001521
[8] K. Nakai, A. Nakae, S. Aba, T. Mashimo and K. Ueda, “5-HT2C Receptor Agonists Attenuate Pain-Related Behaviour in a Rat Model of Trigeminal Neuropathic Pain,” European Journal of Pain, Vol. 14, No. 10, 2010, pp. 999-1006. doi:10.1016/j.ejpain.2010.04.008
[9] C. M. Burns, H. Chu, S. M. Rueter, L. K. Hutchinson, H. Canton, E. Sander-Bush, R. B. Emeson, “Regulation of Serotonin-2C Receptor G-Protein Coupling by RNA Editing,” Nature, Vol. 387, No. 6630, 1997, pp. 303-308. doi:10.1038/387303a0
[10] C. M. Niswender, S. C. Copeland, K. Herrick-Davis, R. B. Emeson and E. Sander-Bush, “RNA Editing of the Human Serotonin 5-Hydroxytryptamine 2C Receptor Silences Consititutive Activity,” Journal of Biological Chemistry, Vol. 274, No. 14, 1999, pp. 9472-9478. doi:10.1074/jbc.274.14.9472
[11] Q. Wang, P. J. O’Brien, C. X. Chen, D. S. Cho, J. M., Murray and K. Nishikura, “Altered G Protein-Coupling Functions of RNA Editing Isoform and Splicing Variant Serotonin 2C Receptors,” Journal of Neurochemistry, Vol. 74, No. 3, 2000, pp. 1290-300. doi:10.1046/j.1471-4159.2000.741290.x
[12] I. Visiers, S. A. Hassan and H. Weinstein, “Differences in Conformational Properties of Second Intracellular Loop (IL2) in 5HT(2C) Receptors Modified by RNA Editing ca Account for G Protein Coupling Efficiency,” Protein Engineering, Vol. 14, No. 6, 2001, pp. 409-414. doi:10.1093/protein/14.6.409
[13] A. Nakae, K. Nakai, T. Tanaka, S. Hagihira, M. Shibata, K. Ueda and T. Mashimo “The Role of RNA Editing of the Serotonin 2C Receptor in a Rat Model of Oro-Facial Neuropathic Pain,” European Journal of Neuroscience, Vol. 27, No. 9, 2008, pp. 2373-2379. doi:10.1111/j.1460-9568.2008.06205.x
[14] A. Nakae, K. Nakai, T. Tanaka, M. Takashina, S. Hagihira, M. Shibata, K. Ueda and T. Mashimo, “Serotonin2C Receptor mRNA Editing in Neuropathic Pain Model,” Neuroscience Re-search, Vol. 60, No. 2, 2008, pp. 228- 231. doi:10.1016/j.neures.2007.10.004
[15] K. Herrick-Davis, E. Grinde and C. M. Niswender, “Serotonin 5-HT2C Receptor RNA Editing Alters Receptor Basal Activity: Implications for Serotonergic Signal Transdaction,” Journal of Neurochemistry, Vol. 73, No. 4, 1999, pp. 1711-1717. doi:10.1046/j.1471-4159.1999.731711.x
[16] R. Flomen, J. Knight, P. Sham, R. Kerwin and A. Makoff, “Evidence That RNA Editing modulates Splice Site Selection in the 5-HT2C Receptor Gene,” Nucleic Acids Research, Vol. 32, No. 7, 2004, pp. 2113-2122. doi:10.1093/nar/gkh536
[17] T. Kiss, “Small Nucleolar RNAs: An Abundant Group of Noncoding RNAs with Doverse Cellular Functions,” Cell, Vol. 109, No. 2, 2002, pp. 145-148. doi:10.1016/S0092-8674(02)00718-3
[18] C. M. Doe, D. Relkovic, A. S. Garfield, J. W. Dalley, D. E. Theobald, T. Humby, L. S. Wilkinson and A. R. Isles, “Loss of the Imprinted snoRNA mbii-52 Leads to Increased 5htr2c pre-RNA Editing and Altered 5HT2cR Mediated Behaviour,” Human Molecular Genetics, Vol. 18, No. 12, 2009, pp. 2140-2158. doi:10.1093/hmg/ddp137
[19] M. Zimmermann, “Ethical Guidelines for Investigations of Experimental Pain in Conscious Animals,” Pain, Vol. 16, No. 2, 1983, pp. 109-110. doi:10.1016/0304-3959(83)90201-4
[20] B. P. Vos, A. M. Strassman and R. J. Maciewicz, “Behavioral Evidence of Trigeminal Neuropathic Pain Following Chronic Constiriction Injury to the Rat’S Infraorbital Nerve,” J Neurosci , Vol. 14, 1994, pp. 2708-2723
[21] G. J. Bennett and Y. K. Xie, “A Peripheral Mononeuropathy in Rat That Produces Disorders of Pain Sensation Like Those Seen in Man,” Pain , Vol. 33, No. 1, 1984, pp. 87-107. doi:10.1016/0304-3959(88)90209-6
[22] S. Kishore, “The snoRNA HBII-52 Absent in Prader-Willi Syndrome Patients Regulates the Alternative Splicing of the Serotonin Receptor 5-HT2cR,” 1984. http://www.stamms-labnet/pdfs/theses/Kishore_Thesis.pdf

comments powered by Disqus

Copyright © 2014 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.