Photosynthetic Toxicity and Oxidative Damage Induced by nano-Fe3O4 on Chlorella vulgaris in Aquatic Environment

Abstract

With the rapid development of nanotechnology and widespread use of nanoproducts, concerns have arisen regarding the ecotoxicity of these materials. In this paper, the photosynthetic toxicity and oxidative damage induced by nano Fe3O4 on a model organism, Chlorella vulgaris (C. vulgaris) in aquatic environment, were studied. The results showed that Nano-Fe3O4 was toxic to C. vulgaris and affected its content of chlorophyll a, malonaldehyde and glutathione, CO2 absorption, net photosynthetic rate, superoxide dismutase activity and inhibition of hydroxyl radical generation. At higher concentrations, compared with the control group, the toxicity of nano-Fe3O4 was significantly different. It suggested that nano-Fe3O4 is ecotoxic to C. vulgaris in aquatic environment.

Share and Cite:

Chen, X. , Zhu, X. , Li, R. , Yao, H. , Lu, Z. and Yang, X. (2012) Photosynthetic Toxicity and Oxidative Damage Induced by nano-Fe3O4 on Chlorella vulgaris in Aquatic Environment. Open Journal of Ecology, 2, 21-28. doi: 10.4236/oje.2012.21003.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Brumfiel, G. (2003) A little knowledge. Nature, 423, 246-248. doi:10.1038/424246a
[2] Konishi, Y., Nomura, T. and Mizoe, K. (2004) A new synthesis route from spent sulfuric acid pickling solution to ferrite nanoparticles. Hydrometallurgy, 74, 57-65. doi:10.1016/j.hydromet.2004.01.007
[3] Franger, S., Benhet, P. and Benhon, J. (2004) Electro- chemical synthesis of Fe3O4 nanoparticles in alkaline aqueous solutions containing complexing agents. Journal of Solid State Electrochemistry, 8, 218-223. doi:10.1007/s10008-003-0469-6
[4] Wan, S.R., Huang, J.S., Yan, H.S., et al. (2006) Size- controlled preparation of magnetite nanoparticles in the presence of graft copolymers. Journal of Materials Che- mistry, 16, 298-303. doi:10.1039/b512605c
[5] Wu, M.Z., Xiong, Y. and Jia, Y.S. (2005) Magnetic field- assisted hydrothermal growth of chain-like nanostructure of magnetite. Chemical Physics Letters, 407, 374-379. doi:10.1016/j.cplett.2004.11.080
[6] Yao, K.L., Tao, J., Liu, Z.L., et al. (2004) Preparation and characterization of polymer-coated core-shell structured magnetic microbeads. Journal of Materials Science Letters, 20, 417-420.
[7] Handy, R.D., Kammer, F., Lead, J.R., Hassell?v, M., Owen, R. and Crane, M. (2008) The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology, 17, 287-314. doi:10.1007/s10646-008-0199-8
[8] Baun, A., Rasmussen, R.F., et al. (2008) Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano- C60. Aquatic Toxicology, 86, 379-387. doi:10.1016/j.aquatox.2007.11.019
[9] Navarro, E., Baun, A., Behra, R., et al. (2008) Environ- mental behavior and ecotoxicity of engineered nanopar- ticles to algae, plants, and fungi. Ecotoxicology, 17, 372- 386. doi:10.1007/s10646-008-0214-0
[10] Pramanik, S., Banerjee, P., Sarkar, A., et al. (2008) Size- dependent interaction of gold nanoparticles with trans- port protein: A spectroscopic study. Journal of Lumines- cence, 128, 1969-1974. doi:10.1016/j.jlumin.2008.06.008
[11] Thill, A., Spalla, O., Chauvat, F., et al. (2006) Cytotoxic- ity of CeO2 nanoparticles for Escherichia coli: A phys- ico-chemical insight of the cytotoxicity mechanism. En- vironmental Science and Technology, 40, 6151-6156. doi:10.1021/es060999b
[12] Handy, R.D., Kammer, F., Lead, J. R., et al. (2008) The ecotoxicology and chemistry of manufactured nanoparti- cles. Ecotoxicology, 17, 287-314. doi:10.1007/s10646-008-0199-8
[13] Wong, S.L., Nakamoto, L. and Wainwright, J.F. (1997) Detection of Toxic Organometallic Complexes in Waste- waters Using Algal Assays. Archives of Environmental Contamination and Toxicology, 32, 358-366. doi:10.1007/s002449900197
[14] Grobbelaar, J.U., Kroon, B.M.A., Burger-Wiersma and T., Mur, L.R. (1992) Influence of medium frequency light/ dark cycles of equal duration on the photosynthesis and respiration of Chlorella pyrenoidosa. Hydrobiologia, 1, 53-62.
[15] Rai, L.C., Husaini, Y. and Mallick, N. (1998) pH-altered interaction of Aluminium and Fluoride on nutrient uptake, photosynthesis and other variables of Chlorella vulgaris. Aquatic Toxicology, 42, 67-84. doi:10.1016/S0166-445X(97)00098-2
[16] Seren, F., Krlov, K. and Blahov, M. (2008) Photosynthe- sis of Chlorella vulgarisas affected by diaqua (4-chloro- 2-methylphenoxyacetato)copper(II) complex. Biologia Pla- ntarum, 38, 71-75. doi:10.1007/BF02879638
[17] Jespersen, A.M. and Christoffersen, K. (1987) Measure- ments of chlorophyll-a from phytoplankton using ethanol as extraction solvent. Archiv für Hydrobiologie, 109, 445-454.
[18] Papista, E., Acs, E. and Boddi, B. (2002) Chlorophyll-a determination with ethanol-a critical test. Hydrobiologia, 485, 191-198. doi:10.1023/A:1021329602685
[19] Lam C.W., James J.T., McCluskey R. and Hunter R.L. (2004) Pulmonary toxicity of single-wall nanotubes in mice 7 and 90 days after intratracheal instillation. Toxi- cological Sciences, 77, 126-134. doi:10.1093/toxsci/kfg243
[20] Lin, W.S., Huang, Y.W., Zhou, X.D. and Ma, YF. (2006) In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicology and Applied Pharmacology, 217, 252-259. doi:10.1016/j.taap.2006.10.004
[21] Nel, A., Xia, T., Madler, L. and Li, N. (2006) Toxic po- tential of materials at nanolevel. Science, 311, 622-627. doi:10.1126/science.1114397
[22] Ji J., Long Z.F. and Lin D.H. (2011) Toxicity of oxide nanoparticles to the green algae Chlorella sp. Biochemi- cal Engineering Journal, 170, 525-530.
[23] Donaldson K. and Tran C.L. (2002) Inflammation caused by particles and fibers. Inhalation Toxicology, 14, 5-27. doi:10.1080/089583701753338613
[24] Oncel, I., Yurdakulol, E., et a1. (2004) Role of antioxi- dant defense system and biochemical adaptation on stress tolerance of high mountain and steppe plants. Interna- tional Journal of Ecology, 26, 211-218.
[25] Brumfiel, G. (2003) A little knowledge. Nature, 423, 246-248. doi:10.1038/424246a
[26] Konishi, Y., Nomura, T. and Mizoe, K. (2004) A new synthesis route from spent sulfuric acid pickling solution to ferrite nanoparticles. Hydrometallurgy, 74, 57-65. doi:10.1016/j.hydromet.2004.01.007
[27] Franger, S., Benhet, P. and Benhon, J. (2004) Electro- chemical synthesis of Fe3O4 nanoparticles in alkaline aqueous solutions containing complexing agents. Journal of Solid State Electrochemistry, 8, 218-223. doi:10.1007/s10008-003-0469-6
[28] Wan, S.R., Huang, J.S., Yan, H.S., et al. (2006) Size- controlled preparation of magnetite nanoparticles in the presence of graft copolymers. Journal of Materials Che- mistry, 16, 298-303. doi:10.1039/b512605c
[29] Wu, M.Z., Xiong, Y. and Jia, Y.S. (2005) Magnetic field- assisted hydrothermal growth of chain-like nanostructure of magnetite. Chemical Physics Letters, 407, 374-379. doi:10.1016/j.cplett.2004.11.080
[30] Yao, K.L., Tao, J., Liu, Z.L., et al. (2004) Preparation and characterization of polymer-coated core-shell structured magnetic microbeads. Journal of Materials Science Letters, 20, 417-420.
[31] Handy, R.D., Kammer, F., Lead, J.R., Hassell?v, M., Owen, R. and Crane, M. (2008) The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology, 17, 287-314. doi:10.1007/s10646-008-0199-8
[32] Baun, A., Rasmussen, R.F., et al. (2008) Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano- C60. Aquatic Toxicology, 86, 379-387. doi:10.1016/j.aquatox.2007.11.019
[33] Navarro, E., Baun, A., Behra, R., et al. (2008) Environ- mental behavior and ecotoxicity of engineered nanopar- ticles to algae, plants, and fungi. Ecotoxicology, 17, 372- 386. doi:10.1007/s10646-008-0214-0
[34] Pramanik, S., Banerjee, P., Sarkar, A., et al. (2008) Size- dependent interaction of gold nanoparticles with trans- port protein: A spectroscopic study. Journal of Lumines- cence, 128, 1969-1974. doi:10.1016/j.jlumin.2008.06.008
[35] Thill, A., Spalla, O., Chauvat, F., et al. (2006) Cytotoxic- ity of CeO2 nanoparticles for Escherichia coli: A phys- ico-chemical insight of the cytotoxicity mechanism. En- vironmental Science and Technology, 40, 6151-6156. doi:10.1021/es060999b
[36] Handy, R.D., Kammer, F., Lead, J. R., et al. (2008) The ecotoxicology and chemistry of manufactured nanoparti- cles. Ecotoxicology, 17, 287-314. doi:10.1007/s10646-008-0199-8
[37] Wong, S.L., Nakamoto, L. and Wainwright, J.F. (1997) Detection of Toxic Organometallic Complexes in Waste- waters Using Algal Assays. Archives of Environmental Contamination and Toxicology, 32, 358-366. doi:10.1007/s002449900197
[38] Grobbelaar, J.U., Kroon, B.M.A., Burger-Wiersma and T., Mur, L.R. (1992) Influence of medium frequency light/ dark cycles of equal duration on the photosynthesis and respiration of Chlorella pyrenoidosa. Hydrobiologia, 1, 53-62.
[39] Rai, L.C., Husaini, Y. and Mallick, N. (1998) pH-altered interaction of Aluminium and Fluoride on nutrient uptake, photosynthesis and other variables of Chlorella vulgaris. Aquatic Toxicology, 42, 67-84. doi:10.1016/S0166-445X(97)00098-2
[40] Seren, F., Krlov, K. and Blahov, M. (2008) Photosynthe- sis of Chlorella vulgarisas affected by diaqua (4-chloro- 2-methylphenoxyacetato)copper(II) complex. Biologia Pla- ntarum, 38, 71-75. doi:10.1007/BF02879638
[41] Jespersen, A.M. and Christoffersen, K. (1987) Measure- ments of chlorophyll-a from phytoplankton using ethanol as extraction solvent. Archiv für Hydrobiologie, 109, 445-454.
[42] Papista, E., Acs, E. and Boddi, B. (2002) Chlorophyll-a determination with ethanol-a critical test. Hydrobiologia, 485, 191-198. doi:10.1023/A:1021329602685
[43] Lam C.W., James J.T., McCluskey R. and Hunter R.L. (2004) Pulmonary toxicity of single-wall nanotubes in mice 7 and 90 days after intratracheal instillation. Toxi- cological Sciences, 77, 126-134. doi:10.1093/toxsci/kfg243
[44] Lin, W.S., Huang, Y.W., Zhou, X.D. and Ma, YF. (2006) In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicology and Applied Pharmacology, 217, 252-259. doi:10.1016/j.taap.2006.10.004
[45] Nel, A., Xia, T., Madler, L. and Li, N. (2006) Toxic po- tential of materials at nanolevel. Science, 311, 622-627. doi:10.1126/science.1114397
[46] Ji J., Long Z.F. and Lin D.H. (2011) Toxicity of oxide nanoparticles to the green algae Chlorella sp. Biochemi- cal Engineering Journal, 170, 525-530.
[47] Donaldson K. and Tran C.L. (2002) Inflammation caused by particles and fibers. Inhalation Toxicology, 14, 5-27. doi:10.1080/089583701753338613
[48] Oncel, I., Yurdakulol, E., et a1. (2004) Role of antioxi- dant defense system and biochemical adaptation on stress tolerance of high mountain and steppe plants. Interna- tional Journal of Ecology, 26, 211-218.
[49] Brumfiel, G. (2003) A little knowledge. Nature, 423, 246-248. doi:10.1038/424246a
[50] Konishi, Y., Nomura, T. and Mizoe, K. (2004) A new synthesis route from spent sulfuric acid pickling solution to ferrite nanoparticles. Hydrometallurgy, 74, 57-65. doi:10.1016/j.hydromet.2004.01.007
[51] Franger, S., Benhet, P. and Benhon, J. (2004) Electro- chemical synthesis of Fe3O4 nanoparticles in alkaline aqueous solutions containing complexing agents. Journal of Solid State Electrochemistry, 8, 218-223. doi:10.1007/s10008-003-0469-6
[52] Wan, S.R., Huang, J.S., Yan, H.S., et al. (2006) Size- controlled preparation of magnetite nanoparticles in the presence of graft copolymers. Journal of Materials Che- mistry, 16, 298-303. doi:10.1039/b512605c
[53] Wu, M.Z., Xiong, Y. and Jia, Y.S. (2005) Magnetic field- assisted hydrothermal growth of chain-like nanostructure of magnetite. Chemical Physics Letters, 407, 374-379. doi:10.1016/j.cplett.2004.11.080
[54] Yao, K.L., Tao, J., Liu, Z.L., et al. (2004) Preparation and characterization of polymer-coated core-shell structured magnetic microbeads. Journal of Materials Science Letters, 20, 417-420.
[55] Handy, R.D., Kammer, F., Lead, J.R., Hassell?v, M., Owen, R. and Crane, M. (2008) The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology, 17, 287-314. doi:10.1007/s10646-008-0199-8
[56] Baun, A., Rasmussen, R.F., et al. (2008) Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano- C60. Aquatic Toxicology, 86, 379-387. doi:10.1016/j.aquatox.2007.11.019
[57] Navarro, E., Baun, A., Behra, R., et al. (2008) Environ- mental behavior and ecotoxicity of engineered nanopar- ticles to algae, plants, and fungi. Ecotoxicology, 17, 372- 386. doi:10.1007/s10646-008-0214-0
[58] Pramanik, S., Banerjee, P., Sarkar, A., et al. (2008) Size- dependent interaction of gold nanoparticles with trans- port protein: A spectroscopic study. Journal of Lumines- cence, 128, 1969-1974. doi:10.1016/j.jlumin.2008.06.008
[59] Thill, A., Spalla, O., Chauvat, F., et al. (2006) Cytotoxic- ity of CeO2 nanoparticles for Escherichia coli: A phys- ico-chemical insight of the cytotoxicity mechanism. En- vironmental Science and Technology, 40, 6151-6156. doi:10.1021/es060999b
[60] Handy, R.D., Kammer, F., Lead, J. R., et al. (2008) The ecotoxicology and chemistry of manufactured nanoparti- cles. Ecotoxicology, 17, 287-314. doi:10.1007/s10646-008-0199-8
[61] Wong, S.L., Nakamoto, L. and Wainwright, J.F. (1997) Detection of Toxic Organometallic Complexes in Waste- waters Using Algal Assays. Archives of Environmental Contamination and Toxicology, 32, 358-366. doi:10.1007/s002449900197
[62] Grobbelaar, J.U., Kroon, B.M.A., Burger-Wiersma and T., Mur, L.R. (1992) Influence of medium frequency light/ dark cycles of equal duration on the photosynthesis and respiration of Chlorella pyrenoidosa. Hydrobiologia, 1, 53-62.
[63] Rai, L.C., Husaini, Y. and Mallick, N. (1998) pH-altered interaction of Aluminium and Fluoride on nutrient uptake, photosynthesis and other variables of Chlorella vulgaris. Aquatic Toxicology, 42, 67-84. doi:10.1016/S0166-445X(97)00098-2
[64] Seren, F., Krlov, K. and Blahov, M. (2008) Photosynthe- sis of Chlorella vulgarisas affected by diaqua (4-chloro- 2-methylphenoxyacetato)copper(II) complex. Biologia Pla- ntarum, 38, 71-75. doi:10.1007/BF02879638
[65] Jespersen, A.M. and Christoffersen, K. (1987) Measure- ments of chlorophyll-a from phytoplankton using ethanol as extraction solvent. Archiv für Hydrobiologie, 109, 445-454.
[66] Papista, E., Acs, E. and Boddi, B. (2002) Chlorophyll-a determination with ethanol-a critical test. Hydrobiologia, 485, 191-198. doi:10.1023/A:1021329602685
[67] Lam C.W., James J.T., McCluskey R. and Hunter R.L. (2004) Pulmonary toxicity of single-wall nanotubes in mice 7 and 90 days after intratracheal instillation. Toxi- cological Sciences, 77, 126-134. doi:10.1093/toxsci/kfg243
[68] Lin, W.S., Huang, Y.W., Zhou, X.D. and Ma, YF. (2006) In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicology and Applied Pharmacology, 217, 252-259. doi:10.1016/j.taap.2006.10.004
[69] Nel, A., Xia, T., Madler, L. and Li, N. (2006) Toxic po- tential of materials at nanolevel. Science, 311, 622-627. doi:10.1126/science.1114397
[70] Ji J., Long Z.F. and Lin D.H. (2011) Toxicity of oxide nanoparticles to the green algae Chlorella sp. Biochemi- cal Engineering Journal, 170, 525-530.
[71] Donaldson K. and Tran C.L. (2002) Inflammation caused by particles and fibers. Inhalation Toxicology, 14, 5-27. doi:10.1080/089583701753338613
[72] Oncel, I., Yurdakulol, E., et a1. (2004) Role of antioxi- dant defense system and biochemical adaptation on stress tolerance of high mountain and steppe plants. Interna- tional Journal of Ecology, 26, 211-218.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.