Banded Iron Formations (BIFs) and Associated Sediments Do Not Reflect the Physical and Chemical Properties of Early Precambrian Seas
Zeev Lewy
Geological Survey of Israel, Jerusalem, Israel.
DOI: 10.4236/ijg.2012.31026   PDF    HTML     8,051 Downloads   15,593 Views   Citations

Abstract

Ring-in-ring structures in Australian Early Precambrian banded iron formation (BIF) were identified as bubbling mud wavelets, which lithified during temporary exposure, contradicting the alleged BIF deep ocean origin. Least altered BIFs consist of alternating chert laminae with, and without iron oxides (or carbonates). They were precipitated during on-and-off periods of ferrous iron oxidation controlled by microbial oxygenic photosynthetic activity during solar illumination, which stopped during darkness as characterizing the Polar Regions, thus forming genuine annual varves. This polar environment is further corroborated by the magnetite-hematite-magnetite microcrystal layers in the iron-rich laminae reflecting mid-spring-summer-autumn changes in solar radiation, and by diamictite at the end of the sequence deposited from melting glaciers when the continental plate shifted to lower latitudes. BIF sequences in various countries comprise evaporates. They attest to intensive evaporation of the warm hydrothermal solution in restricted shallow lakes under the freezing dry climate up to silica (geyserite) precipitation referred to chert. The existence of oceans, mid-ocean-ridges and island arcs during the Early Precambrian results from the misinterpreted oceanic origin of BIFs and the Phanerozoic occurrences of the associated mafic-ultramafic basalt flows (Greenstone Belt).

Share and Cite:

Z. Lewy, "Banded Iron Formations (BIFs) and Associated Sediments Do Not Reflect the Physical and Chemical Properties of Early Precambrian Seas," International Journal of Geosciences, Vol. 3 No. 1, 2012, pp. 226-236. doi: 10.4236/ijg.2012.31026.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] C. Klein, “Some Precambrian Banded Iron-Formations (Bifs) from around the World: Their Age, Geologic Setting, Mineral-ogy, Metamorphism, Geochemistry, and Ori- gin,” American Mineralogist, Vol. 90, No. 10, 2005, pp. 1473-1499. doi:10.2138/am.2005.1871
[2] A. F. Trendall, “The Signifi-cance of Iron-Formation in the Precambrian Stratigraphic Re-cord,” In: W. Altermann and P. L. Corcoran, Eds., Precambrian Sedimentary Environments: A Modern Approach to Ancient Depositional Systems, International Association of Sedimentolo-gists Spe- cial Publication, John Wiley & Sons, Inc., New York, 2002, pp. 33-66.
[3] M. Gole and C. Klein, “Banded Iron-Formations through Much of Precambrian Time,” Journal of Geology, Vol. 89, No. 2, 1981, pp. 169-183. doi:10.1086/628578
[4] A. D. Webb, et al., “From Banded Iron-Formation to Iron Ore: Geochemical and Mineralogical Constraints from across the Hamersley Province, Western Aus-tralia,” Che- mical Geology, Vol. 197, No. 1-4, 2003, pp. 215-251. doi:10.1016/S0009-2541(02)00352-2
[5] A. L. Pickard, “SHRIMP U-Pb Zircon Ages of Tufface- ous mudrocks in the Brockman Iron Formation of Hamersley Range, Western Aus-tralia,” Australian Journal of Earth Sciences, Vol. 49, No. 3, 2002, pp. 491-507. doi:10.1046/j.1440-0952.2002.00933.x
[6] R. C. Morris, “Genetic Modelling for Banded Iron-Formation of the Hamer-sley Group, Pilbara Craton, Western Australia,” Precambrian Research, Vol. 60, 1993, pp. 243- 286. doi:10.1016/0301-9268(93)90051-3
[7] A. F. Trendall and J. G. Blockley, “The Iron-Formations of the Precambrian Hamer-sley Group, Western Australia, with Special Reference to the Associated Crocidolite,” Western Australia Geological Survey Bulletin, Vol. 119, 1970, pp. 1-365.
[8] N. J. Beukes, “Pa-leoenvironmental Setting of Iron-For- mations In The Deposi-tional Basin of the Transvaal Supergroup, South Africa,” In: A. F. Trendall and R. C. Morris, Eds., Iron-Formations: Facts and Problems. Development in Precambrian Geology, Vol. 6, 1983, pp. 131- 209. doi:10.1016/S0166-2635(08)70043-4
[9] C. Klein, et al., “Filamentous Microfossils in the Early Proterozoic Transvaal Supergroup: Their Morphology, Sig- nificance, and Paleoenvironmental Setting,” Precambrian Research, Vol. 36, No. 1, 1987, pp. 81-94. doi:10.1016/0301-9268(87)90018-0
[10] J. W. Schopf, “Fossil Evidence of Archaean Life,” Philosophical Transactions of the Royal Society, Vol. 361, No. 1470, 2006, pp. 869-885. doi:10.1098/rstb.2006.1834
[11] H. D. Holland, “The Oceans: A Possible Source of Iron In Iron-Formations,” Economic Ge-ology, Vol. 68, No. 7, pp. 1169-1172. doi:10.2113/gsecongeo.68.7.1169
[12] A. G. Cairns-Smith, “Precambrian Solution Photochemistry, Inverse Segregation, and Banded Iron-Formations,” Nature, Vol. 276, No. 5690, 1978, pp. 807-808. doi:10.1038/276807a0
[13] A. Kappler, et al., “Deposition of Banded Iron Formations by Anoxygenic Phototrophic Fe(II)-Oxidizing Bacteria,” Geology, Vol. 33, No. 11, 2005, pp. 865-868. doi:10.1130/G21658.1
[14] K. O. Konhauser, et al., “Decoup-ling Photochemical Fe(II) Oxidation from Shallow-Water BIF Deposition,” Earth and Planetary Science Letters, Vol. 258, No. 1-2, 2007, pp. 87-100. doi:10.1016/j.epsl.2007.03.026
[15] F. Widdel, et al., “Ferrous Iron Oxidation by Anoxygenic Photo-trophic Bacteria,” Nature, Vol. 362, No. 6423, 1993, pp. 834-836. doi:10.1038/362834a0
[16] P. E., Jr. Cloud, “Sig-nificance of the Gunflint (Precambrian) Microflora,” Science, Vol. 148, No. 3666, 1965, pp. 27-35.
[17] P. E., Jr. Cloud, “Paleobiological Significance of Iron- formations,” Economic Geology, Vol. 68, 1973, pp. 1135- 1143. doi:10.2113/gsecongeo.68.7.1135
[18] K. O. Konhauser, et al., “Could Bacteria Have Formed the Precambrian Banded Iron Formations?” Geology, Vol. 30, No. 12, 2002, pp. 1079-1082. doi:10.1130/0091-7613(2002)030<1079:CBHFTP>2.0.CO;2
[19] C. J. Bjerrum and D. E. Canfield, “Ocean Productivity about 1.9 Gyr Ago Limited by Phosphorus Adsorption Onto Iron Oxides,” Nature, Vol. 417, No. 6885, 2002, pp. 159-162. doi:10.1038/417159a
[20] B. M. Simonson, “Sedimentological Constraints on the Origin of Precambrian Iron-Formations,” Geological Society of America Bulletin, Vol. 96, 1985, pp. 244-252. doi:10.1130/0016-7606(1985)96<244:SCOTOO>2.0.CO;2
[21] B. Krape?, et al., “Hydrothermal and Resedimented Origins of the Precursor Sediments to Banded Iron Formation: Sedi-mentological Evidence from the Early Palaeoproterozoic Brockman Supersequence of Western Australia,” Sedimentol-ogy, Vol. 50, No. 5, 2003, pp. 979-1011. doi:10.1046/j.1365-3091.2003.00594.x
[22] A. L. Pickard, et al., “Deep-Marine Depositional Setting of Banded Iron Forma-tion: Sedimentological Evidence From Interbedded Clastic Sedimentary Rocks in the Early Palaeoproterozoic Dales Gorge Member of Western Australia,” Sedimentary Geology, Vol. 170, No. 1-2, 2004, pp. 37-62. doi:10.1016/j.sedgeo.2004.06.007
[23] H. P. Eugster and I.-M. Chou, “The Depositional Environments of Precambrian Banded Iron-Formations,” Economic Geology, Vol. 68, No. 7, 1973, pp. 1144-1168. doi:10.2113/gsecongeo.68.7.1144
[24] R. Buick and J. S. R. Dunlop, “Evaporitic Sediments of Early Archaean Age from the Warrawoona Group, North Pole, Western Australia,” Sedi-mentology, Vol. 37, No. 2, 1990, pp. 247-277. doi:10.1111/j.1365-3091.1990.tb00958.x
[25] A. Gandin, et al., “Vanished Evaporates and Carbonate Formation in the Neoar-chaean Kogelbeen and Gamohaan Formations of the Camp-bellrand Subgroup, South Africa,” Journal of African Earth Sciences, Vol. 41, No. 1-2, 2005, pp. 1-23. doi:10.1016/j.jafrearsci.2005.01.003
[26] E. A. Gaucher, et al., “Palaeotemperature Trend for Precambrian Life Inferred from Resurrected Proteins,” Nature, Vol. 451, No. 7179, 2008, pp. 704-707. doi:10.1038/nature06510
[27] F. Robert and M. Chaussidon, “A Paleotemperature Curve for the Precambrian Oceans Based on Silicon Isotopes in Cherts,” Nature, Vol. 443, No. 7036, 2006, pp. 969-972. doi:10.1038/nature05239
[28] E. G. Nisbet and N. H. Sleep, “The Habitat and Nature of Early Life,” Na-ture, Vol. 409, No. 6823, 2001, pp. 1083- 1091. doi:10.1038/35059210
[29] D. Y. Sumner and J. P. Grotzinger, “Implications for Neoarchaean Ocean Chemistry from Primary Carbonate Mineralogy of the Campbellrand-Malmani Platform, South Africa,” Sedimentology. Vol. 51, No. 6, 2004, pp. 1273- 1299. doi:10.1111/j.1365-3091.2004.00670.x
[30] H. Dalstra, “Cover Photo,” Geology, Vol. 31, No. 10. 2003, cover photo.
[31] Z. Lewy, “Early Precambrian Banded Iron Forma-tions: Biochemical Precipitates from Highly Evaporated Hydro- thermal Solutions of Polar Region Lakes,” Carbonates and Evaporites, Vol. 24, No. 1, 2009, pp. 1-15.
[32] M. G. Miller and R. K. O’Nions, “Sources of Precambrian Chemical and Clastic Sediments,” Nature, Vol. 314, No. 6009, 1985, pp. 325-330. doi:10.1038/314325a0
[33] A. F. Trendall, “Second Progress Report on the Brock- man Iron Formation in the Wit-tenoom-Yampire Area,” Geo- logical Survey of Western Austra-lia Annual Report 1965, 1966, pp. 75-87.
[34] M. Idnurm and J. W. Giddings, “Australian Precambrian Polar Wander: A Review,” Precambrian Research, Vol. 40-41, 1988, pp. 61-88. doi:10.1016/0301-9268(88)90061-7
[35] M. W. McElhinny and M. O. McWilliams, “Precambrian Geodynamics—A Pa-laeomagnetic View,” Tectonophysics, Vol. 40, No. 1-2, 1977, pp. 137-159. doi:10.1016/0040-1951(77)90032-4
[36] D. T. A. Symons, “Huronian Glaciation and Polar Wander from the Gowganda Formation, Ontario,” Geology, Vol. 3, No. 6, 1975, pp. 303-306. doi:10.1130/0091-7613(1975)3<303:HGAPWF>2.0.CO;2
[37] V. A. Melezhnik, “Huronian Glaciation and Polar Wander from the Gowganda Formation, Ontario,” Geology, Vol. 3, 2006, pp. 130-137.
[38] D. A. Evans, et al., “Low-Latitude Glaciation in the Palaeoproterozoic Era,” Nature, Vol. 386, No. 6622, 1997, pp. 262-266. doi:10.1038/386262a0
[39] D. McB. Martin, “Depositional Setting and Implications of Paleoproterozoicgla-ciomarine Sedimentation in the Hamersley Province, Western Australia,” Geological Sur- vey of America Bulletin, Vol. 111, No. 2, 1999, pp. 189- 203.
[40] T. D. Brock, “Environmentl Microbiology of Living Stromatolites,” In: M. R. Walter, Ed., Stromatolites. Developments in Sedimentology, Vol. 20, 1976, pp. 141-148. doi:10.1038/303163a0
[41] P. S. Braterman, et al., “Photo-Oxidation of Hydrated Fe2++—Significance for Banded Iron Formations,” Nature, Vol. 303, No. 5913, 1983 pp. 163-164.
[42] W. W. Fischer and A. H. Knoll, “An Iron Shut-tle for Deepwater Silica in Late Archean and Early Paleopro-terozoic Iron Formation,” GSA Bulletin, Vol. 121, No. 1-2, 2009, pp. 222-235.
[43] N. J. Beukes, “Facies Relations, De-positional Environments and Diagenesis in a Major Early Pro-terozoic Stromatolitic Carbonate Platform to Basinal Sequence, Cam- pbellrand Subgroup, Transvaal Supergroup, Southern Africa,” Sedimentary Geology, Vol. 54, 1987, pp. 1-46. doi:10.1016/0037-0738(87)90002-9
[44] W. Altermann and H.-G. Herbig, “Tidal Flat Peposits of the Lower Proterozoic Campbell Group along the Southwestern Margin of the Kaap-vaal Craton, Northern Cape Province, South Africa,” Journal of African Earth Sciences, Vol. 13, No. 3-4, 1992, pp. 415-435. doi:10.1016/0899-5362(91)90106-9
[45] W. Altermann, “The Evolution of Life and Its Impact on Sedimentation,” Special Publications of the International Association of Sedimentolo-gists, Vol. 33, 2002, pp.15-32.
[46] M. R. Walter, “Geyserites of Yellowstone National Park: An Example of Abiogenic Stromatolites,” In: M. R. Walter, Ed., Stromatolites. Develop-ments in Sedimentology, Vol. 20, Elsevier, Amsterdam, 1976, pp. 87-112.
[47] J. R. Eggleston and W. E. Dean, “Freshwater Stromatolitic Bioherms in Green Lake, New York,” In: M. R. Walter, Ed., Stromatolites. Developments in Sedimentology, Vol. 20, Elsevier, Amsterdam, 1973, pp. 479-488.
[48] R. C. Surdam and J. L. Wray, “Lacustrine Stromatolites, Eocene Green River Formation, Wyoming,” In: M. R. Walter, Ed., Stromatolites. Developments in Sedimentology, Vol. 20, El-sevier, Amsterdam, 1976, pp. 535-541.
[49] B. M. Simonson and A. D. T. Goode, “First Discovery of Ferruginous Chert Arenites in the Early Precambrian Ha- mersley Group of West-ern Australia,” Geology, Vol. 17, No. 3, 1989, pp. 269-272. doi:10.1130/0091-7613(1989)017<0269:FDOFCA>2.3.CO;2
[50] N. J. Bukes and C. Klein, “Geochemistry and Sedimentol-ogy of a Facies Transition—From Microbanded to Gra- nular Iron-Formation—In the Early Proterozoic Trans- vaal Super-group, South Africa,” Precambrian Research, Vol. 47, No. 1-2, 1990, pp. 99-139.
[51] I. W. H?lbich, et al., “Carbon-ate-Banded Iron Formation Transition in the Early Protero-zoicum of South Africa,” Journal of African Earth Sciences, Vol. 15, No. 2, 1992, pp. 217-236. doi:10.1016/0899-5362(92)90070-S
[52] R. Buick and J. S. R. Dunlop, “Evaporitic Sediments of Early Archaean Age from the Warrawoona Group, North Pole, Western Australia,” Sedi-mentology, Vol. 37, No. 2, 1990, pp. 247-277. doi:10.1111/j.1365-3091.1990.tb00958.x
[53] K. Sugitani, et al., “Stratigraphy and Sedimentary Petrology of an Archean Volcanic-Sedimentary Succession at Mt. Goldsworthy in the Pilbara Block, Western Australia: Implications of Evaporate (Nahcolite) and Barite De- position,” Precambrian Research, Vol. 120, No. 1-2, 2003, pp. 55-79. doi:10.1016/S0301-9268(02)00145-6
[54] A. Gadin, et al., “Vanished Evaporates and Carbonate Formation in the Neoar-chaean Kogelbeen and Gamohaan formations of the Campbell-rand Subgroup, South Africa,” Journal of African Earth Sci-ences, Vol. 41, No. 1-2, 2005, pp. 1-23. doi:10.1016/j.jafrearsci.2005.01.003
[55] N. T. Arndt, “Why Was Flood Volcanism on Submerged Continental Platforms So Common in the Precambrian?” Precambrian Research, Vol. 97, No. 3-4, 1999, p. 155. doi:10.1016/S0301-9268(99)00030-3
[56] M. E. Barley, et al., “Sedimentary Evidence for an Archaean Shallow-Water Vol-canic-Sedimentary Facies, Ea- stern Pilbara Block, Western Australia,” Earth and Pla- netary Science Letters, Vol. 43, No. 1, 1979, pp. 74-84. doi:10.1016/0012-821X(79)90156-0
[57] D. R. Lowe and L. P. Knauth, “Sedimentology of the Onverwacht Group (3.4 Billion Years), Rransvaal, South Africa, and Its Bearing on the Char-acteristics and Evolution of the Early Earth,” Journal of Geol-ogy, Vol. 85, 1977, pp. 699-723. doi:10.1086/628358
[58] J. P. Harnmeijer, “Squeezing Blood from a Stone: Inference into the Life and Depositional Environments,” Ph.D. Thesis, University of Washington, Washington, 2010.
[59] A. Bekker, J. F. Slack, N. Planavsky, B. Krape?, A. Hofmann, K. O. Konhauser and O. J. Rouxel, “Iron Formation: The Sedimentary Product of a Complex Interplay Among Mantle, Tectonic, Oceanic and Biospheric Processes,” Economic Geology, Vol. 105, No. 3, 2010, pp. 467-508. doi:10.2113/gsecongeo.105.3.467
[60] N. J. Planavsky, P. McGoldrick, C. T. Scott, C Li, C. T. Reinhard, A. E. Kelly, X. Chu, A. Bekker, G. D. Love, and T. W. Lyons, “Widespread Iron-Rich Conditions in the Mid-Proterozoic Ocean,” Nature, Vol. 477, No. 7356, 2011, pp. 448-451. doi:10.1038/nature10327

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.