Geochemistry of Water and Suspended Particulate in the Lower Yangtze River: Implications for Geographic and Anthropogenic Effects

Abstract

The lower Yangtze River undergoes intense anthropogenic activities and various natural progress compared to the upper-middle reaches. We explore the aqueous geochemistry of ions and elements of suspended particulate in order to recognize the effects of natural conditions and anthropogenic inputs on rivers. These results show that total dissolved solids of water in the lower Yangtze River are similar as those in the upper-middle reaches of mainstream, but higher in tributaries. The major elements of suspended particulate in high-flow regime (HFR) have approximate concentrations with those in low-flow regime (LFR). But remarkable high concentrations of trace elements in tributaries exhibit regardless of HFR or LFR. Multivariate statistics show the suspended particulate matter (SPM) of mainstream presents similar characteristics in flood season and diverse characteristics in dry season. While SPM of tributaries reveals different results. The majority of suspended matter originates from municipal and industrial discharge both in flood season and dry season, and a part from road runoff in flood season, showing an effect of hydrological regime. Mining activity induces remarkably high concentrations of metals regardless of HFR or LFR. Therefore, the geochemistry of SPM in the lower reach of Yangtze River are significantly affected by the anthropogenic input of different sources, which is different from the upper-middle Yangtze River.

Share and Cite:

X. Yuan, J. Li, C. Mao, J. Ji and Z. Yang, "Geochemistry of Water and Suspended Particulate in the Lower Yangtze River: Implications for Geographic and Anthropogenic Effects," International Journal of Geosciences, Vol. 3 No. 1, 2012, pp. 81-92. doi: 10.4236/ijg.2012.31010.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Y. Wu, J. Zhang and Q. Zhou, “Persistent Organochlorine Residues in Sediments from Chinese River/Estuary Systems,” Environmental Pollution, Vol. 105, No. 1, 1999, pp. 143-150. doi:10.1016/S0269-7491(98)00160-2
[2] Z. Chen, J. Li, H. Shen and Z. Wang, “Yangtze River of China: Historical Analysis of Discharge Variability and Sediment Flux,” Geomorphology, Vol. 41, No. 2-3, 2001, pp. 77-91.
[3] P. Gundersen and E. Steinnes, “Influence of pH and TOC Concentration on Cu, Zn, Cd and Al Speciation in Rivers,” Water Research, Vol. 37, No. 2, 2003, pp. 307-318. doi:10.1016/S0043-1354(02)00284-1
[4] Q. Z. Yao, J. Zhang, Y. Wu and H. Xiong, “Hydrochemical Processes Controlling Arsenic and Selenium in the Changjiang River (Yangtze River) System,” Science of The Total Environment, Vol. 377, No. 1, 2007, pp. 93-104. doi:10.1016/j.scitotenv.2007.01.088
[5] L. Bj?rkvald, I. Buffam, H. Laudon and C. M. M?rth, “Hydrogeochemistry of Fe and Mn in Small Boreal Streams: the Role of Seasonality, Landscape Type and Scale,” Geochimica et Cosmochimica Acta, Vol. 72, No. 12, 2008, pp. 2789-2804. doi:10.1016/j.gca.2008.03.024
[6] L. C. Zhang, S. Zhang, W. J. Dong and L. J. Wang, “Geochemistry of Aquatic Environment in the Headstream of the Yangtze River,” Press of Environmental Sciences of China, Beijing, 1992.
[7] J. Chen, F. Wang, X. Xia and L. Zhang, “Major Element Chemistry of the Yangtze (Yangtze River),” Chemical Geology, Vol. 187, No. 3-4, 2002, pp. 231-255. doi:10.1016/S0009-2541(02)00032-3
[8] B. Chetelat, C. Q. Liu, Z. Q. Zhao, Q. L. Wang, S. L. Li, J. Li and B. L. Wang, “Geochemistry of the Dissolved Load of the Yangtze Basin Rivers: Anthropogenic Impacts and Chemical Weathering,” Geochimica et Cosmochimica Acta, Vol. 72, No. 17, 2008, pp. 4254-4277. doi:10.1016/j.gca.2008.06.013
[9] J. S. Chen, F. Y. Wang and X. H. Xia, “Geochemistry of Rare Earth Elements in the Mainstream of the Yangtze River, China,” Applied Geochemistry, Vol. 13, No. 4, 1998, pp. 451-462. doi:10.1016/S0883-2927(97)00079-6
[10] W. Z. Yue, Z. Q. Bi, S. D. Jiao and N. Y. Wei, “Study on Stratigraphic Sequence of the Mesozoic Continental Basin along the Lower Yangtze River in Jiangsu and Anhui Provinces,” Geological Publishing House , Beijing, 2002, pp. 121-186.
[11] B. Dupr?, J. Gaillardet, D. Rousseau and C. J. Allègre, “Major and Trace Element of River-Borne Material: The Congo Basin,” Geochimica et Cosmochimica Acta, Vol. 60, No. 8, 1996, pp. 1301-1321. doi:10.1016/0016-7037(96)00043-9
[12] A. P. Davis, M. Shokouhian and S. Ni, “Loading Estimates of Lead, Copper, Cadmium, and Zinc in Urban Runoff from Specific Sources,” Chemosphere, Vol. 44, No. 5, 2001, pp. 997-1009. doi:10.1016/S0045-6535(00)00561-0
[13] M. Meybeck and R. Helmer, “The Quality of Rivers: From Pristine Stage to Global Pollution,” Palaeogeography, Palaeoclimatology, Palaeoecology, Vol. 75, No. 4, 1989, pp. 283-309. doi:10.1016/0031-0182(89)90191-0
[14] Y. L. Shi, Y. Wu and M. E. Ren, “Hydrological Characteristics of the Changjiang and Its Relation to Sediment Transport to the Sea,” Continental Shelf Research, Vol. 4, No. 1-2, 1985, pp. 5-15. doi:10.1016/0278-4343(85)90018-4
[15] W. J. Cai, X. H. Guo, C. T. A. Chen, M. H. Dai, L. J. Zhang, W. D. Zhai, S. E. Lohrenze, K. D. Yin, P. J. Harrison and Y. C. Wang, “A Comparative Overview of Weathering Intensity and Flux in the World’s Major Rivers with Emphasis on the Changjiang, Huanghe, Zhujiang (Pearl) and Mississippi Rivers,” Continental Shelf Research, Vol. 28, No. 12, 2008, pp. 1538-1549. doi:10.1016/j.csr.2007.10.014
[16] R. Cidu and R. Biddau, “Transport of Trace Elements under Different Seasonal Conditions: Effects on the Quality of River Water in a Mediterranean Area,” Applied Geochemistry, Vol. 22, No. 12, 2007, pp. 2777-2794. doi:10.1016/j.apgeochem.2007.06.017
[17] H. P. Jarvie, C. Neal, A. D. Tappin, J. D. Burton, L. Hill, M. Neal, M. Harrow, R. Hopkins, C. Watts and H. Wickham, “Riverine Inputs of Major Ions and Trace Elements to the Tidal Reaches of the River Tweed, UK,” Science of the Total Environment, Vol. 251-252, 2000, pp.55-81.
[18] K. S. Smith, “Metal Sorption on Mineral Surfaces: An Overview with Examples Relating to Mineral Deposits,” Reviews in Economic Geology, Vol. 6A, 1999, pp. 161- 182.
[19] L. C. Zhang, Z. S. Yu and S. Zhang, “Researches on Chemical Elements of Aquatic Environment,” China Environmental Science Press, Beijing, 1996, pp. 213-238.
[20] M. C. Gromaire, S. Garnaud, M. Saad and G. Chebbo, “Contribution of Different Sources to the Pollution of Wet Weather Flows in Combined Sewers,” Water Research, Vol. 35, No. 2, 2001, pp. 521-533. doi:10.1016/S0043-1354(00)00261-X
[21] M. K. Koshikawa, T. Takamatsu, J. Takada, M. Y. Zhu, B. H. Xu, Z. Y. Chen, S. Murakami, K. Q. Xu and M. Watanabe, “Distributions of Dissolved and Particulate Elements in the Yangtze estuary in 1997-2002: Background Data before the Closure of the Three Gorges Dam,” Estuarine, Coastal and Shelf Science, Vol. 71, No. 1-2, 2007, pp. 26-36. doi:10.1016/j.ecss.2006.08.010
[22] Z. F. Shi, X. Jiang, S. W. Yang, X. C. Jin and J. M. Cheng, “The Spatial and Temporal Variation Characteristics and Potential Ecological Risk Assessment of Heavy Metal Pollution in Surface Sediments of Chaohu, China,” Journal of Ago-Environment Science, Vol. 29, No. 5, 2010, pp. 138-144.
[23] R. L. Bibby and J. G. Webster-Brown, “Characterisation of Urban Catchment Suspended Particulate Matter (Auck- land Region, New Zealand): A Comparison with Non- Urban SPM,” Science of The Total Environment, Vol. 343, No. 1-3, 2005, pp. 177-197. doi:10.1016/j.scitotenv.2004.09.041
[24] B. Shi, H. E. Allen and M. T. Grassi, “Changes in Dissolved and Particulate Copper Following Mixing of POTW Effluents with Delaware River Water,” Water Research, Vol. 32, No. 8, 1998, pp. 2413-2421. doi:10.1016/S0043-1354(97)00463-6
[25] A. Giorgi and L. Malacalza, “Effect of an Industrial Discharge on Water Quality and Periphyton Structure in a Pampeam Stream,” Environmental Monitoring and Assessment, Vol. 75, No. 2, 2002, pp. 107-119. doi:10.1023/A:1014474128740
[26] B. Chetelat , C. Q. Liu , Z. Q. Zhao, Q. L. Wang, S. L. Li, J. Li and B. L. Wang, “Geochemistry of the Dissolved Load of the Changjiang Basin Rivers: Anthropogenic Impacts and Chemical Weathering,” Geochimica et Cosmochimica Acta, Vol. 72, No. 17, 2008. pp. 4254-4277. doi:10.1016/j.gca.2008.06.013
[27] S. Roy, J. Gaillardet and C. J. Allegre, “Geochemistry of Dissolved and Suspended Loads of the Seine River, France: Anthropogenic Impact, Carbonate and Silicate Weathering,” Geochimica et Cosmochimica Acta, Vol. 63, No. 9, 1999, pp. 1277-1292. doi:10.1016/S0016-7037(99)00099-X

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.