Catalytic Reduction of Benzaldehyde Under Hydrogen Flow over Nickel-Containing Mesoporous Silica Catalysts

Abstract

The hydrogenation of benzaldehyde over a series of nickel-containing mesoporous silicas with different nickel contents was studied at atmospheric pressure in the range temperature of 393 - 513 K under H2 ?ow. These materials (noted Nin-HMS with n = Si/Ni = 50, 25, 15) have been prepared at room temperature using a route based on hydrogen bonding and self-assembly between neutral primary amine micelles (S0) and neutral inorganic precursors (I0). They were characterized by their chemical analysis, BET surface area, XRD, FT-IR, and SEM microscopy. The obtained products were benzylalcohol, toluene, benzene with yields depending on the nickel content (Si/Ni ratio) and reaction temperature. The products of benzaldehyde hydrogenation (benzylalcohol, and toluene) and hydrogenolysis (benzene) were preferentially formed at low/middle and high reaction temperature respectively. The mesoporous Ni-containing materials were very active hydrogenation catalysts with almost 90% selectivity to benzylalcohol product and showed excellent stability. A mechanism in which the reaction could be initiated by a benzaldehyde reduction over Nin-HMS materials under hydrogen flow with formation of reaction products is proposed.

Share and Cite:

A. Saadi, K. Lanasri, K. Bachari, D. Halliche and C. Rabia, "Catalytic Reduction of Benzaldehyde Under Hydrogen Flow over Nickel-Containing Mesoporous Silica Catalysts," Open Journal of Physical Chemistry, Vol. 2 No. 1, 2012, pp. 73-80. doi: 10.4236/ojpc.2012.21010.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. A. Vannice and R. L. Garten, “CO Hydrogenation Reactions over Titania-Supported Nickel,” Journal of Catalysis, Vol. 66, No. 1, 1980, pp. 242-247.
[2] M. Fiefelder, “Practical Catalytic Hydrogenation: Technics and Applications,” Wiley-Interscience, New York, 1971.
[3] P. N. Rylander, “Catalytic Hydrogenation in Organic Synthesis,” Academic Press, London, 1979.
[4] P. N. Rylander, “Hydrogenation Methods,” Academic Press, London, 1985.
[5] K. Yoshida, C. Gonzalez-Arellano, R. Luque and P. L. Gai, “Efficient Hydrogenation of Carbonyl Compounds Using Low-Loaded Supported Copper Nanoparticles under Microwave Irradiation,” Applied Catalysis A: General, Vol. 379, No. 1-2, 2010, pp. 38-44. doi:10.1016/j.apcata.2010.02.028
[6] R. Rao, A. Dandekar, R. T. K. Baker and M. A. Vannice, “Properties of Copper Chromite Catalysts in Hydrogenation Reactions,” Journal of Catalysis, Vol. 171, No. 2, 1997, pp. 406-419. doi:10.1006/jcat.1997.1832
[7] D. Haffad, U. Kameswari, M. M. Bettahar, A. Chambellan and J. C. Lavalley, “Reduction of Benzaldehyde on Metal Oxides,” Journal of Catalysis, Vol. 172, No. 1, 1997, pp. 85-92. doi:10.1006/jcat.1997.1854
[8] A. Saadi, Z. Rassoul, J. Barrault and M. M. Bettahar, “Hydrogénation Sélective de la Cinnamaldéhyde en Alcool Cinnamique sur de Catalyseurs Supportés à Base de Cuivre,” Journal of Algerian Chemical Society, Vol. 9, No. 2, 1999, pp. 269-276.
[9] A. Aboulayt, A. Chambellan, M. Marzin, J. Saussey, F. Maugé, J. C. Lavalley, C. Mercier and R. Jacquot, “Study of the Hydrogenation of Methyl Benzoate to Benzaldehyde on Various Metal Oxides,” Studies in Surface Science and Catalysis, Vol. 78, 1993, pp. 131-138. doi:10.1016/S0167-2991(08)63312-1
[10] A. Saadi, M. M. Bettahar and Z. Rassoul, “Reduction of Benzaldehyde on Copper Supported on SiO2. Effect of Method of Preparation,” Studies in Surface Science and Catalysis, Vol. 130, 2000, pp. 2261-2266. doi:10.1016/S0167-2991(00)80805-8
[11] A. Saadi, R. Merabti, M. M. Bettahar and Z. Rassoul, “Catalyseurs Cu/MO (M= Mg, Ca, Sr). Caractérisation par des Réactions Tests,” Journal of Algerian Chemical Society, Vol. 11, No. 2, 2001, pp. 231-240.
[12] R. Merabti, A. Saadi, Z. Rassoul and M. M. Bettahar, “Caractérisations Physico-Chimiques des Catalyseurs à Base de Nickel Supportés,” Journal of Algerian Chemical Society, Vol. 16, No. 1, 2006, pp. 39-47.
[13] M. A. Keane, “Gas Phase Hydrogenation/Hydrogenolysis of Benzaldehyde and O-Tolualdehyde over Ni/SiO2,” Journal of Molecular Catalysis A: Chemical, Vol. 118, No. 2, 1997, pp. 261-269. doi:10.1016/S1381-1169(96)00386-X
[14] R. Hubaut, J. P. Bonnelle and M. Daage, “Selective Hydrogenation of Heavy Polyunsaturated Molecules on Copper-Chromium Catalysts,” Journal of Molecular Catalysis, Vol. 55, No. 1, 1989, pp. 170-183. doi:10.1016/0304-5102(89)80251-2
[15] D. Poondi and M. A. Vannice, “The Influence of MSI (Metal-Support Interactions) on Phenylacetaldehyde Hydrogenation over Pt Catalysts,” Journal of Molecular Catalysis A: Chemical, Vol. 124, No. 1, 1997, pp. 79-89. doi:10.1016/S1381-1169(97)00066-6
[16] M. W. De Lange, J. G. Van Ommen and L. Lefferts, “Deoxygenation of Benzoic Acid on Metal Oxides: 2. Formation of Byproducts,” Applied Catalysis A: General, Vol. 231, No. 1-2, 2002, pp. 17-26. doi:10.1016/S0926-860X(01)00702-5
[17] S. Paganelli, U. Matteoli, A. Scrivanti and C. Botteghi, “Pt0-Complexes as Catalyst Precursors for Homogeneous Carbon=Carbon and Carbon=Oxygen Double Bond Hydrogenation,” Journal of Organometallic Chemistry, Vol. 397, No. 3, 1990, pp. 375-381. doi:10.1016/0022-328X(90)85337-X
[18] J. A. Schreifels, P. C. Maybury and W. E. Swartz, “X-Ray Photoelectron Spectroscopy of Nickel Boride Catalysts: Correlation of Surface States with Reaction Products in the Hydrogenation of Acrylonitrile,” Journal of Catalysis, Vol. 65, No. 1, 1980, pp. 195-206. doi:10.1016/0021-9517(80)90294-8
[19] A. Saadi, R. Merabti, Z. Rassoul and M. M. Bettahar, “Hydrogenation of Benzaldehyde over Supported Nickel Catalysts,” Journal of Molecular Catalysis A: Chemical, Vol. 253, No. 1-2, 2006, pp. 79-85. doi:10.1016/j.molcata.2006.03.003
[20] M. A. Vannice, “Hydrogenation of co and Carbonyl Functional Groups,” Catalysis Today, Vol. 12, No. 2-3, 1992, pp. 255-267.
[21] C. T. Kresge, M. E. Leonowicz, W. J. Roth and J. C. Beck, “Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-Crystal Template Mechanism,” Nature, Vol. 359, No. 6397, 1992, pp. 710-712. http://134.243.5.70/ASSETS/87CB6FBC90C84546BA13660DB519F346/200207j5.pdf
[22] J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins and J. L. Schlenker, “A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates,” Journal of American Chemical Society, Vol. 114, No. 27, 1992, pp. 10834-10843. doi:10.1021/ja00053a020
[23] P. T. Tanev, M. Chibwe and T. J. Pinnavaia, “Titanium-Containing Mesoporous Molecular Sieves for Catalytic Oxidation of Aromatic Compounds,” Nature, Vol. 368, 1994, pp. 321-323. doi:10.1038/368321a0
[24] A. Yin, J. Qu, X. Guo, W. L. Dai and K. Fan, “The Influence of B-Doping on the Catalytic Performance of Cu/HMS Catalyst for the Hydrogenation of Dimethyloxalate,” Applied Catalysis A: General, Vol. 400 No. 1-2, 2011, pp. 39-47. doi:10.1016/j.apcata.2011.04.011
[25] A. Sayari, “Catalysis by Crystalline Mesoporous Molecular Sieves,” Chemistry of Materials, Vol. 8, No. 8, 1996, pp. 1840-1852. doi:10.1021/cm950585+
[26] A. Yin, C. Wen, X. Guo, W. L. Dai and K. Fan, “Influence of Ni Species on the Structural Evolution of Cu/SiO2 Catalyst for the Chemoselective Hydrogenation of Dimethyl Oxalate,” Journal of Catalysis, Vol. 280, No. 1, 2011, pp. 77-88. doi:10.1016/j.jcat.2011.03.006
[27] C. Y. Ma, J. Cheng, H. L. Wang, Q. Hu, H. Tian, C. He and Z. P. Hao, “Characteristics of Au/HMS Catalysts for Selective Oxidation of Benzyl Alcohol to Benzaldehyde,” Catalysis Today, Vol. 158, No. 3-4, 2010, pp. 246-251. doi:10.1016/j.cattod.2010.03.080
[28] E. S. Vasiliadou and A. A. Lemonidou, “Investigating the Performance and Deactivation Behaviour of Silica-Supported Copper Catalysts in Glycerol Hydrogenolysis,” Applied Catalysis A: General, Vol. 396, No. 1-2, 2011, pp. 177-185. doi:10.1016/j.apcata.2011.02.014
[29] A. Tuel, I. Arcon and J. M. M. Millet, “Investigation of Structural Iron Species in Fe-Mesoporous Silicas by Spectroscopic Techniques,” Journal of the Chemical Society, Faraday Transactions, Vol. 94, No. 23, 1998, pp. 3501-3510. doi:10.1039/A806912C
[30] X. Lu and Y. Yuan, “Copper-Containing Hexagonal Mesoporous Silicas for Styrene Epoxidation Using Tert-Butylhydroperoxide,” Applied Catalysis A: General, Vol. 365, No. 2, 2009, pp. 180-186. doi:10.1016/j.apcata.2009.06.012
[31] K. Bachari, A. Touileb, N. Tahir, A. Saadi, D. Halliche and O. Cherifi, “Catalytic Propeties of Cr-HMS Materials in the Benzylation of Benzene with Benzylchloride,” Kinetics and Catalysis, Vol. 52, No. 1, 2011, pp. 48-54. doi:10.1134/S0023-158411010022
[32] A. Saadi, Z. Rassoul and M. M. Bettahar, “Gas Phase Hydrogenation of Benzaldehyde over Supported Copper Catalysts,” Journal of Molecular Catalysis A: Chemical, Vol. 164, No. 1-2, 2000, pp. 205-216. doi:10.1016/S1381-1169(00)00199-0
[33] R. Merabti, K. Bachari, D. Halliche, Z. Rassoul and A. Saadi, “Synthesis and Characterization of Activated Copper or Nickel and Their Catalytic Behavior towards Benzaldehyde Hydrogenation,” Reaction Kinetics, Mechanisms and Catalysis, Vol. 101, 2010, pp 195-208. doi:10.1007/S11144-0100215-x

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.