Post-meiotic apozygotic combinatory process in sugar beet (Beta vulgaris L.)

Abstract

The effect of colchicine on phenotypic classes ratio of the enzyme locus controlling alcohol dehydrogenase (ADH1) in sugar beet agamospermous progenies was analysed. The obtained data are indicative of the thing that colchicine causes polytenization of homological chromosome regions carrying marker locus Adh1 alleles. Theoretical calculation of the formation of egg cells frequencies and those of further development of cells entering embryogenesis without fertilization, also the diminution calculation of excessive chromosome regions carrying marker locus alleles have been made. The coincidence of theoretical and experimental ratios of phenotypic classes indicates the existence of post-meiotic apozygotic combinatory process in plants.

Share and Cite:

Levites, E. and Kirikovich, S. (2012) Post-meiotic apozygotic combinatory process in sugar beet (Beta vulgaris L.). Advances in Bioscience and Biotechnology, 3, 75-79. doi: 10.4236/abb.2012.31011.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Levites, E.V. (2005) Sugarbeet plants produced by agamospermy as a model for studying genome structure and function in higher plants. Sugar Tech, 7, 67-70. doi:10.1007/BF02942532
[2] Levites, E.V. (2007) Marker enzyme phenotype ratios in agamospermous sugarbeet progenies as a demonstration of multidimensional encoding of inherited information in plants. http://arxiv.org/abs/q-bio/0701027
[3] Maletskii, S.I., Levites, E.V., Maletskaya, E.I. and Ovechkina, O.N. (1998) Autosegregation and linked inheritance in the agamospermous progeny of sugar beet Beta vulgaris L. Russian Journal of Genetics, 34, 418- 424.
[4] Levites, E.V., Shkutnik, T., Ovechkina, O.N. and Maletskii, S.I. (1999) Pseudosegregation in the agamospermic progeny of male sterile plants of the sugar beet (Beta vulgaris L.). Doklady Biological Sciences, 365, 182-184.
[5] Maletskaya, E.I. and Maletskaya, S.S. (1999) The nuclear DNA mass variability in embryo root cells of sugarbeet. Sugar Tech, 1, 30-36. doi:10.1007/BF02945157
[6] Levites, E.V., Denisova, F.Sh., Kirikovich, S.S. and Judanova S.S. (Maletskaya S.S.) (2000) Ratios of phenotypes at the Adh1 locus in the apozygotic offspring in sugarbeet (C1 generation). Sugar Tech, 2, 26-30. doi:10.1007/BF02995582
[7] Nagl, W. (1981) Polytene chromosomes of plants. International Review of Cytology, 73, 21-53. doi:10.1016/S0074-7696(08)61285-1
[8] Zhimulev, I.F. (1992) Polytene chromosomes: Morphology and structure. Novosibirsk.
[9] Carvalheira, G. (2000) Plant polytene chromosomes. Genetics and Molecular Biology, 23, 1043-1050. doi:10.1590/S1415-47572000000400050
[10] Morozova, E.M. (2002) Additional nuclear DNA in cells of embryo sacs of Haemanthus albiflos and Ornithogalum caudatum. Biological Bulletin, 29, 192-195. doi:10.1023/A:1014371403332
[11] Mericle, L.W. and Mericle, R.P. (1970) Nuclear DNA complement in young proembryos of barlei. Mutation Research, 10, 508-518. doi:10.1016/0027-5107(70)90013-8
[12] Ermakov, I.P., Barantseva, L.M. and Matveeva, N.P. (1981) Cytochemical investigation of DNA during ovule development and early embryogenesis in Pinus sibirica Du Tour. Ontogenez, 12, 339-345.
[13] Rasch, E.M. and Wyngaard, G.A. (2001) Evidence for endoreduplication: Germ cell DNA levels prior to chromatin diminution in Mesocyclops edax. Journal of Histochemistry and Cytochemistry, 49, 795-796. doi:10.1177/002215540104900615
[14] Maletskii, S.I. and Maletskaya, E.I. (1996) Self-fertility and agamospermy in sugar beet Beta vulgaris L. Russian Journal of Genetics, 32, 1643-1650.
[15] Owen, F.V. (1945) Cytoplasmically inherited male sterility in sugar beet. Journal of Agricultural Research, 71, 423-440.
[16] Levites, E.V. (1986) Genetics of plant isozymes. Novosibirsk.
[17] Vallejos, C.E. (1983) Enzyme activity staining. Isozymes in plant genetics and breeding. Part A. Elsevier, Amsterdam, 469-515.
[18] Haldane, J.B.S. (1930) Theoretical Genetics of Autopolyploids. Journal of Genetics, 22, 359-372. doi:10.1007/BF02984197
[19] Maletskii, S.I. and Konovalov, A.A. (1985) The inheritance of alcohol dehydrogenase in sugarbeet. I. The analysis of deviations from monogene segregation. Russian Journal of Genetics, 21, 1527-1534.
[20] Levites, E.V. and Kirikovich, S.S. (2011) Autosegregation of enzyme loci in agamospermous progenies of triploid plants of sugar beet (Beta vulgaris L.). Russian Journal of Genetics, 47, 836-841. doi:10.1134/S102279541107012X
[21] Hallden, C., Hjerdin, A., Rading, I.M., Sall, T., Fridlundh, B., Johannisdottir, G., Tuvesson, S., Akesson, C., Nilsson, N.O. (1996) A high density RFLP linkage map of sugar beet. Genome, 39, 634-645. doi:10.1139/g96-081
[22] Hassan, L., Jones, R.N. and Posselt, U.K. (1989) A novel source of genetic variation in ryegrasses (Lolium multiflorum, L. perenne). Heredity, 63, 339-342. doi:10.1038/hdy.1989.107
[23] Francis, A., Jones, R.N., Parker, J.S. and Posselt, U.K. (1990) Colchicine-induced heritable variation in cell size and chloroplast numbers in leaf mesophyll cells of diploid ryegrass (Lolium perenne L.). Euphytica, 49, 49-55. doi:10.1007/BF00024130
[24] Castro, C.M., Oliveira, A.C. and Calvaho, F.I.F. (2003) Changes in allele frequencies in colchicine treated Ryegrass population assessed with APD marker. Agrociencia, 9, 107-112.
[25] Rauf, S., Khan, I.A. and Khan, F.A. (2006) Colchicine-induced tetraploidy and changes in allele frequencies in colchicine-treated populations of diploids assessed with RAPD markers in Gossypium arboreum L. Turkish Journal of Biology, 30, 93-100.
[26] Mensah, J.K., Obadoni, B.O., Akomeah, P.A., Ikhajiagbe, B. and Ajibolu, J. (2007) The effects of sodium azide and colchicine treatments on morphological and yield traits of sesame seed (Sesame indicum L.). African Journal of Biotechnology, 6, 534-538.
[27] Cionini, P.G., Cavallini, A., Corsi, R. and Fogli, M. (1982) Comparison of homologous polytene chromosome in Phaseolus cocineus embryo suspensor cells: Morphological, autoradiographic and -cytophotometric analyses. Chromosoma, 86, 383-396. doi:10.1007/BF00292265

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.