Electrochemical Characterization of Streptavidin-HRP Immobilized on Multiwall Carbon Nanotubes for Biosensor Applications

Abstract

In this work, we used gold labeled multiwall carbons nanotubes for peroxidase biosensor. The gold labeling on multiwall carbon nanotubes can be achieved with Pressure vapor Deposition (PVD) technique. The obtained carbon nanotubes can be immobilized on gold electrode with the airbrushing technique. The stability and the molecular structure of the labeled multiwall carbon nanotubes were characterized with cyclic voltammetry, impedance spectroscopy and Fourrier Transform Infra-Red spectroscopy (FTIR). It shows a higher conductivity and a good stability in water interface. For streptavidin-HRP immobilization, the labeled gold nanotubes were activated over night with thiol-acid (16 carbons). An activation procedure was achieved with EDC/NHS for HRP-streptavidin immobilization. The development of biosensor for H2O2 detection was observed with the impedance spectroscopy and cyclic voltammetry techniques. This method could be used to determine total H2O2 concentration in the range 4 μM - 160 μM. The results show that the biosensor response depends on the conductivity and the large surface-to-volume ratio attained with multiwall carbon nanotubes. The response of the developed biosensors was reproducible with higher stability.

Share and Cite:

I. Hafaiedh, H. Baccar, T. Ktari and A. Abdelghani, "Electrochemical Characterization of Streptavidin-HRP Immobilized on Multiwall Carbon Nanotubes for Biosensor Applications," Journal of Biomaterials and Nanobiotechnology, Vol. 3 No. 1, 2012, pp. 31-36. doi: 10.4236/jbnb.2012.31005.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] C. N. Rao, B. C. Satishkumar, A. Govindaraj and M. Nath, “Nanotubes,” ChemPhysChem, Vol. 2, No. 2, 2001, pp. 79-105.
[2] J. Wang, “Carbon-Nanotube Based Electrochemical Biosensors,” Electroanalysis, Vol. 17, No. 1, 2005, pp. 7-14. doi:10.1002/elan.200403113
[3] R. H. Baughman, A. Zakhidov and W. A. de Heer, “Carbon Nanotubes: The Route toward Applications,” Science, Vol. 297, No. 5582, 2002, pp. 787-792. doi:10.1126/science.1060928
[4] A. Starr, V. Joshi, S. Skarupo and D. Thomas, “Gas Sensor Array Based on Metal-Decorated Carbon Nanotubes,” Journal Physical Chemistry B, Vol. 110, No. 42, 2006, pp. 21014-21020. doi:10.1021/jp064371z
[5] I. Jimeneza, A. Cirera, A. Cornet, J. R. Morante and I. Garcia, “Pulverisation Method for Active Layer Coating on Microsystems,” Sensors and Actuators B, Vol. 84, No. 1, 2002, pp. 78-82.
[6] R. Legrib, “Design, Fabrication and Characterization of Gas Sensors Based on Nanohybrid Materials,” Ph.D. Thesis, Universitat Rovira i Virgili, Tarragona, 2010,
[7] A. Abdelghani, S. Hleli and K. Cherif, “Optical and Electrochemical Characterization of Self Assembled Octadecyltrichlorosilane Monolayer on Modified Silicon Electrode,” Material Letters, Vol. 56, No. 6, 2002, pp. 1064-1068. doi:10.1016/S0167-577X(02)00678-X
[8] Y. Hou, S. Helali, A. Zhang, N. Jaffrezic-Renault, C. Martelet, J. Minic, T. Gorojankina, M.-A. Persuy, E. Pajot-Augy, R. Salesse, F. Bessueille, J. Samitier, A. Errachid, V. Akimov, L. Reggiani, C. Pennetta and E. Alfinito, “Immobilization of Rhodopsin on a Self-Assembled Multilayer and Its Specific Detection by Electrochemical Impedance Spectroscopy,” Biosensors and Bioelectronics, Vol. 21, No. 7, 2006, pp. 1393-1402. doi:10.1016/j.bios.2005.06.002
[9] S. Hleli, A. Abdel-ghani and A. Tlili, Impedance Spectroscopy Technique for DNA Hybridization,” Sensors, Vol. 3, No. 10, 2003, pp. 472-479. doi:10.3390/s31000472
[10] S. Hleli, C. Martelet, A. Abdelghani, N. Burais, N. Jaffrezic-Renault, “Atrazine Analysis Using an Impedimetric Immunosensor Based on Mixed Biotinylated Self-Assembled Monolayer,” Sensors and Actuators B, Vol. 113, No. 2, 2006, pp. 711-717. doi:10.1016/j.snb.2005.07.023
[11] J. R. MacDonald, “Impedance Spectroscopy,” Wiley, New York, 1987.
[12] H. Hillebrandt A. Abdelghani, C. Abdelghani and E. Sackmann, “Electrical and Optical Characterization of Thrombin-Induced Permeability of Cultured Endothelial Cell Monolayers on Semiconductor Electrode Arrays,” Applied Physics A, Vol. 73, No. 5, 2001, pp. 539-546. doi:10.1007/s003390100879
[13] W. Gerlald, “Fundamental Principles of the Electric Properties of Supported Lipid Membranes Investigated by Advanced Methods of Impedance Spectroscopy,” Ph.D. Thesis, Technishe Universitat of München, Munich, 1999.
[14] I. Hafaid, S. Chebil, H. Korri-Youssoufi, F. Bessueille, A. Errachid, Z. Sassi, Z .Ali, A. Abdelghani and N. Jaffrezic-Renault, “Effect of Electrical Conditions on an Impedimetric Immunosensor Based on a Modified Conducting Polypyrrole,” Sensors and Actuators B, Vol. 144, No. 1, 2010, pp. 323-331. doi:10.1016/j.snb.2009.08.058
[15] A. Tlili, A. Abdelghani, S. Hleli and M. A. Maaref, “Electrical Characterization of a Thiol SAM on Gold as a First Step of the Fabrication of an Immunosensors Based on a Quartz Crystal Microbalance,” Sensors, Vol. 4, 2004, pp. 105-114.
[16] H. Baccar, T. Ktari and A. Abdelghani, “Functionalized Palladium Nanoparticles for Hydrogen Peroxide Biosensor,” International Journal of Electro-chemistry, 2011, Article ID: 603257.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.