Ultrasensitive Detection of Glyphosate Using CdTe Quantum Dots in Sol-Gel-Derived Silica Spheres Coated with Calix[6]arene as Fluorescent Probes
Tao Li, Yunyou Zhou, Junyong Sun, Kai Wu
.
DOI: 10.4236/ajac.2012.31003   PDF    HTML     5,658 Downloads   10,571 Views   Citations

Abstract

We have developed a simple method for the preparation of highly fluorescent and stable, water-soluble CdTe quantum dots in sol-gel-derived composite silica spheres which were coated with calix[6]arene. The resulting nanoparticles (NPs) were characterized in terms of UV, fluorescence and FT-IR spectroscopy and TEM. The results show that the new NPs display more intense fluorescence intensity and are more stable than its precursors of the type SiO2/CdTe. Under the optimum, the novel NPs exhibit a higher selectivity and ultrasensitive fluorescence probes for the determination of gly-phosate over other pesticides, the fluorescence intensity increase with the concentration of glyphosate in the range from 1.0 to 25.0 nmol/L and the detection limit is low to 0.0725 nmol/L. A mechanism is suggested to explain the inclusion process by a Langmuir binding isotherm.

Share and Cite:

T. Li, Y. Zhou, J. Sun and K. Wu, "Ultrasensitive Detection of Glyphosate Using CdTe Quantum Dots in Sol-Gel-Derived Silica Spheres Coated with Calix[6]arene as Fluorescent Probes," American Journal of Analytical Chemistry, Vol. 3 No. 1, 2012, pp. 12-18. doi: 10.4236/ajac.2012.31003.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] H. U. Lee, H. Y. Shin, J. Y. Lee, Y. S. Song, G. H. Park and S. W. Kim, “Quantitative Detection of Glyphosate by Simultaneous Analysis of UV Spectroscopy and Fluorescence Using DNA-Labeled Gdd Nanoparticles,” Journal of Agricultural and Food Chemistry, Vol. 58, No. 23, 2010, pp. 12096-12100. doi:10.1021/jf102784t
[2] M. Ibanez, O. J. Pozo, J. V. Sancho, F. J. Lopez and Z. F. Hernande, “Re-Evaluation of Glyphosate Determination in Water by Liquid Chromatography Coupled to Electrospray Tandem Mass Spectrometry,” Journal of Chro- matography A, Vol. 1134, No. 1-2, 2006, pp. 51-55. doi:10.1016/j.chroma.2006.07.093
[3] P. J. Rice, E. L. Arthur and A. C. Barefoot, “Advances in Pesticide Environmental Fate and Exposure Assessments,” Journal of Agricultural and Food Chemistry, Vol. 55, No. 14, 2007, pp. 5367-5376. doi:10.1021/jf063764s
[4] Y. Ito, T. Goto, S. Yamada, T. Ohno, H. Matsumoto, H. Oka and Y. Ito, “Rapid Determination of Carbamate Pesticidesb in Food Using Dual Counter-Current Chromatography Directly Interfaced with Mass Spectrometry,” Journal of Chromatography A, Vol. 1187, No. 1-2, 2008, pp. 53-57. doi:10.1016/j.chroma.2008.01.078
[5] G. Sagratini, J. Manes, D. Giardina, P. Damiani and Y. Pico, “Analysis of Carbamate and Phenylurea Pesticide Residues in Fruit Juices by Soild-Phase Microextraction and Liquid Chromatography-Mass Spectrometry,” Journal of Chromatography A, Vol. 1147, No. 2, 2007, pp. 135-143. doi:10.1016/j.chroma.2007.02.066
[6] J. S. Ridlen, G. J. Klopf and T. A. Nieman, “Determination of Glyphosate and Related Compounds Using HPLC with Tris(2,2’-bipyridyl)ruthenium(II) Electrogenerated Chemilumi-nescence Detection,” Analytica Chimica Acta, Vol. 341, No. 1, 1997, pp. 195-204. doi:10.1016/S0003-2670(96)00493-X
[7] F. S. Bayo, R. V. Hyne and K. L. Desseille, “An Amperometric Method for the Detection of Amitrole, Glyphosate and Its Aminome-thyl-Phosphonic Acid Metabolite in Environmental Waters Using Passive Samples,” Analytica Chimica Acta, Vol. 675, No. 2, 2010, pp. 125- 131. doi:10.1016/j.aca.2010.07.013
[8] C. P. Han and H. B. Li, “Host-Molecule-Coated Quantum Dots as Fluorescent Sensors,” Analytical and Bioanalytical Chemistry, Vol. 397, No. 4, 2010, pp. 1437-1444. doi:10.1007/s00216-009-3361-0
[9] S. C. Zhang, J. Chen and X. G. Li, “Preparation of Uniform CdSe/Polyelectrolyte Multi-layers on the Surface of SiO2 Spheres,” Nanotechnology, Vol. 15, No. 5, 2004, pp. 477-479. doi:10.1088/0957-4484/15/5/012
[10] H. B. Li, Y. Zhang, X. Q. Wang, D. J. Xiong and Y. Q. Bai, “Calixarene Capped Quantum Dots as Luminescent Probes for Hg2+ Ions,” Materials Letters, Vol. 61, No. 7, 2007, pp. 1474-1477. doi:10.1016/j.matlet.2006.07.064
[11] L. D. Chem, J. Liu, X. F. Yu, M. He, X. F. Pei, Z. Y. Tang, Q. Q. Wang, D. W. Pang and Y. Li, “The Biocompatibility of Quantum Dots Probes Used for the Targeted Imaging of Hepatocellular Carcinoma Metastasis,” Biomaterials, Vol. 29, No. 31, 2008, pp. 4170-4176. doi:10.1016/j.biomaterials.2008.07.025
[12] C. Y. Chen, C. T. Cheng, C. W. Lai, K. C. Wu, P. T. Chou, Y. H. Choub and H. T. Chiu, “Potassiumion Recognition by 15-Crown-5 Functionalized CdSe/ZnS Quantum Dots in H2O,” Chemical Communications, Vol. 3, No. 3, 2006, pp. 263-265. doi:10.1039/b512677k
[13] K. Palaniappan, S. A. Hackney and J. Liu, “Supramo- lecular Control of Complexation-Induced Fluorescence Change of Water-Soluble, Cyclodextrin-Modified CdS Quantum Dots,” Chemical Communications, Vol. 23, No. 23, 2004, pp. 2704-2705. doi:10.1039/b409075f
[14] H. B. Li, W. Xiong, Y. Yan, J. A. Liu, H. B. Xu and X. L. Yang, “Selenium Calixarene for Luminescent and Stable Quantum Dots,” Materials Letters, Vol. 60, No. 5, 2006, pp. 703-705. doi:10.1016/j.matlet.2005.09.067
[15] F. Garcia-San Tamaria, V. Salgueirino-Maceira, C. Lopez and L. M. Liz-Marzan, “Synthetic Opals Based on Silica- Coated Gold Nanoparticles,” Langmuir, Vol. 18, No. 11, 2002, pp. 4519-4522. doi:10.1021/la025594t
[16] Y. H. Yang and M. Y. Gao, “Dre-paration of Fluorescent SiO2 Particles with Single CdTe Nano-crystal Cores by the Reverse Microemulsion Method,” Advanced Materials, Vol. 17, 2005, pp. 2354-2357. doi:10.1002/adma.200500403
[17] T. Li, Y. Y. Zhou, J. Y. Sun, D. B. Tang, S. X. Guo and X. P. Ding, “Ultrasensitive Detection of Mercury(Ⅱ) Ion Using CdTe Quantum Dots in Sol-Gel-Derived Silica Spheres Coated with Calix[6]arene as Fluorescent Pro- bes,” Microchimica Acta, Vol. 175, No. 1-2, 2011, pp. 113-119. doi:10.1007/s00604-011-0655-7
[18] A. Royer, S. Beguin, J. C. Tabet, S. Hulot, M. A. Reding and P. Y. Communal, “Determination of Glyphosate and Aminomethyl Phosphonic Acid Residues in Water by Gas Chromatography with Tandem Mass Spectrometry after Exchange Ion Resin Purification and Derivatisation Application on Vegetable Ma-trices,” Analytical Chemistry, Vol. 72, No. 16, 2000, pp. 3826-3832. doi:10.1021/ac000041d
[19] F. B. C. Coutinho and F. M. L. Coutinho, “Direct Determination of Glyphosate Using Hydro-philic Interaction Chromatography with Coulometric Detection at Copper Microelectrode,” Analytica Chimica Acta, Vol. 592, No. 1, 2007, pp. 30-35. doi:10.1016/j.aca.2007.04.003
[20] Z. L. Chen, W. X. He, M. Beer, M. Megharaj and R. Naidu, “Speciation of Glyphosate, Phosphate and Aminomethylphos-phonic Acid in Soil Extracts by Ion Chromatography with In-ductively Coupled Plasma Mass Spectrometry,” Talanta, Vol. 78, No. 3, 2009, pp. 852-856. doi:10.1016/j.talanta.2008.12.052
[21] A. Khenifi, Z. Derriche, C. Forano, V. Prevot and C. Mousty, “Glyphosate and Glufosi-nate Detection at Electrogenerated NiAl-LDH Films,” Analytica Chimica Acta, Vol. 654, No.2, 2009, pp. 97-102. doi:10.1016/j.aca.2009.09.023
[22] A. M. Rojano-Delgado, F. Priego-Capote, M. D. Luquede Castvo and R. De Drado, “Screening and Confirmatory Analysis of Glyoxylate: A Bio-marker of Plants Resistance against Herbicids,” Talanta, Vol. 82, No. 5, 2010, pp. 1757-1762. doi:10.1016/j.talanta.2010.07.068
[23] M. Kim, J. Stripeikis, F. Inon and M. Tudino, “A Simplified Approach to the Determi-nation of N-Nitroso Glyphosate in Technical Glyphosate Using HPLC with Post-Derivatization and Colorimetric Detection,” Talanta, Vol. 72, No. 3, 2007, pp. 1054-1058.
[24] X. Z. Meng, Z. Y. Pan, J. J. Wu, Y. L. Qiu, L. Chen and G. M. Li, “Occur-rence of Polybrominated Diphenyl Ethers in Soil from the Cen-tral Loess Plateau, China: Role of Regional Range Atmospheric Transport,” International Toxicology of Mixtures Conference, Vol. 83, No. 10, 2011, pp. 1391-1397. doi:10.1016/j.talanta.2006.12.047
[25] J. C. Young, K. S. Khan and B. P. Marriage, “Fluorescence Detection and Determination of Glyphosate via Its N-Nitroso Derivative by Thin-Layer Chromatography,” Journal of Agricultural and Food Chemistry, Vol. 25, No. 4, 1977, pp. 918-922. doi:10.1021/jf60212a069
[26] H. Li and F. Qu, “Synthesis of CdTe Quantum Dots in Sol-Gel-Derived Composite Silica Spheres Coated with Calix[4]arene as Luminescent Probes for Pesticides,” Materials Letters, Vol. 19, 2007, pp. 4148-4154.
[27] D. Sun, G. G. Luo, N. Zhang, Q. J. Xu and Y. C. Jin, “A Lamella 2D Siliver(I) Coordination Polymer Con-structed from in Situ Generated 2-Mercaptobenzoic Acid,” Inor-ganic Chemistry Communications, Vol. 13, No. 2, 2010, pp. 306-309. doi:10.1016/j.inoche.2009.12.011
[28] T. Hiratani and K. Konishi, “Surface-Cap-Mediated Host- Guest Chemistry of Semiconductor CdS: Intercalative Cation Accumulation around a Phenyl-Capped CdS Clu- ster and its Notable Effects on the Cluster Photoluminescence,” Angewandte Chenie International Edition, Vol. 43, No. 44, 2004, pp. 5943-5946.
[29] Y. F. Chen and Z. Rosenzweig, “Luminescent CdS Quantum Dots as Selective Ion Probes,” Analytical Chemistry, Vol. 74, No. 19, 2002, pp. 5132-5138. doi:10.1021/ac0258251

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.