Removal of Cesium on Polyaniline Titanotungstate as Composite Ion Exchanger
I.M. El-Naggar, E. S. Zakaria, I. M. Ali, M. Khalil, M. F. El-Shahat
.
DOI: 10.4236/aces.2012.21020   PDF    HTML     6,279 Downloads   11,487 Views   Citations

Abstract

Polyaniline titanotungstate (PATiW) was synthesized by the sol-gel method. Adsorption isotherm studies of Cs+ from aqueous solution are described. Elemental Composition, chemical solubility, ion-exchange capacity (IEC) and pH titration are studied. Distribution coefficients (Kd) for ten metal ions have been determined. It was found that the polyaniline titanotungstate has high affinity and high selectivity for Cs+. The material was high separation of Cs+ from other metal ions. The adsorbent capacity was determined using the Freundlich and Langmuir adsorption isotherm models. The Cs+ adsorption isotherm data fit best to the Freundlich isotherm model. The maximum Cs+ uptake of polyaniline titanotungstate was found 217 mg/g. A column tests were performed to determine the breakthrough curves with varying bed depths and flow rates in different solutions. The results show that the half breakthrough time increases proportionally with increasing bed depths. Kinetic studies for removal cesium from milk were investigated.

Share and Cite:

I. El-Naggar, E. Zakaria, I. Ali, M. Khalil and M. El-Shahat, "Removal of Cesium on Polyaniline Titanotungstate as Composite Ion Exchanger," Advances in Chemical Engineering and Science, Vol. 2 No. 1, 2012, pp. 166-179. doi: 10.4236/aces.2012.21020.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] IAEA, “Remediation of Areas Contaminated by Past Activities and Accidents, Safety Requirements,” Safety Standards Series No. WSR-3, STI/PUB/1176, IAEA, Vienna, 2003.
[2] P. J. Coughtrey and M. C. Thorne, “Radionuclide Distribution and Transport in Terrestrial and Aquatic Ecosystems,” A. A. Balkema, Rotterdam, 1983.
[3] A. Clearfield, “Inorganic Ion Exchange Materials,” CRC Press, Boca Raton, 1982.
[4] A. A. Khan and M. M. Alam, “New and Novel OrganicInorganic Type Crystalline ‘Polypyrrolel/Polyantimonic Acid’ Composite System: Preparation, Characterization and Analytical Applications as a Cation-Exchange Material and Hg(II) Ion-Selective Membrane Electrode,” Analytica Chimica Acta, Vol. 504, 2004, pp. 253-264. doi:10.1016/j.aca.2003.10.054
[5] A. A. Khan, “Inamuddin, Preparation, Physico-Chemical Characterization, Analytical Applications and Electrical Conductivity Measurement Studies of an ‘Organic-InorGanic’ Composite Cation-Exchanger: Polyaniline Sn(IV) Phosphate,” Reactive & Functional Polymers, Vol. 66, 2006, pp. 1649-1663. doi:10.1016/j.reactfunctpolym.2006.06.007
[6] A. A. Khan and M. M. Alam, “Determination and Separation of Pb2+ from Aqueous Solutions Using a Fibrous Type Organic–Inorganic Hybrid Cation-Exchange Material: Polypyrrole Thorium(IV) Phosphate,” Reactive & Functional Polymers, Vol. 63, No. 2, 2005, pp. 119-133. doi:10.1016/j.reactfunctpolym.2005.02.001
[7] A. A. Khan and M. M. Alam, “Synthesis, Characterization and Analytical Applications of a New and Novel ‘Organic–Inorganic’ Composite Material as a Cation Exchanger and Cd(II) Ion-Selective Membrane Electrode: Polyaniline Sn(IV) Tungstoarsenate,” Reactive & Functional Polymers, Vol. 55, No. 3, 2003, pp. 277-290. doi:10.1016/S1381-5148(03)00018-X
[8] R. Niwas, A. A. Khan and K. G. Varshney, “Synthesis and Ion Exchange Behaviour of Polyaniline Sn(IV) Arsenophosphate: A Polymeric Inorganic Ion Exchanger,” Colloids and Surfaces A, Vol. 150, 1999, pp. 7-14. doi:10.1016/S0927-7757(98)00843-7
[9] K. G. Varshney, N. Tayal and U. Gupta, “Acrylonitrile Based Cerium (IV) Phosphate as a New Mercury Selective Fibrous Ion-Exchanger: Synthesis, Characterization and Analytical Applications,” Colloids and Surfaces A, Vol. 145, No. 2-3, 1998, pp. 71-81. doi:10.1016/S0927-7757(98)00657-8
[10] G. Alberti, M. Casciola, C. Dionigi and R. Vivani, Proceedings of International Conference on Ion-Exchange, ICIE’95, Takamtsu, 1995.
[11] A. Mardan, R. Ajaz, A. Mehmood and S. M. Raza, “Preparation of Silica Potassium Cobalt Hexacyanoferrate Composite Ion Exchanger and Its Uptake Behavior for Cesium,” Separation and Purification Technology, Vol. 16, No. 2, 1999, pp. 147-158. doi:10.1016/S1383-5866(98)00121-X
[12] Z. Alam and S. A. Nabi, “Synthesis and Characterization of a Thermally Stable Strongly Acidic Cd(II) Ion Selective Composite Cation-Exchanger: Polyaniline Ce(IV) Molybdate,” Desalination, Vol. 250, No. 2, 010, pp. 515-522.
[13] Y. A. Ismail, “Synthesis and Characterization of Electrically Conducting Poly-O-Methoxyaniline Zr(1V) Molybdate Cd(II) Selective Composite Cation-Exchanger,” Desalination, Vol. 250, No. 2, 2010, pp. 523-529. doi:10.1016/j.desal.2008.06.033
[14] S. A. Nabi, Mu. Naushad and R. Bushra, “Synthesis and Characterization of a New Organic-Inorganic Pb2+ Selective Composite Cation Exchanger Acrylonitrile Stannic(IV) Tungstate and Its Analytical Applications,” Chemical Engineering Journal, Vol. 152, No. 1, 2009, pp. 80-87. doi:10.1016/j.cej.2009.03.033
[15] T. P. Valsala, S. C. Roy, J. G. Shah, J. Gabriel, K. Raj and V. Venugopal, “Removal of Radioactive Caesium from Low Level Radioactive Waste (LLW) Streams Using Cobalt Ferrocyanide Impregnated Organic Anion Exchanger,” Journal of Hazardous Material, Vol. 166, No. 2-3, 2009, pp. 1148-1153. doi:10.1016/j.jhazmat.2008.12.019
[16] I. M. El-Naggar, E. S. Zakaria, I. M. Ali, M. Khalil and M. F. El-Shahat, “Studies on Synthetic Polyaniline Titanotungstate and Its Applications for Cesium Treatment,” Inorganic Chemistry, 2011, in Press.
[17] N. E. Topp and K. W. Pepper, “Properties of Ion Exchange Resin in Relation to Their Structure, I. Titration Curves,” Journal of the Chemical Society, Vol. 690, 1949, pp. 3299-3303. doi:10.1039/jr9490003299
[18] M. Qureshi, J. P. Gupta and V. Sharma, “Comparison of the Ion-Exchange Behaviour of Zirconium, Thorium, Vanadium, Uranium, Stannic and Titanium Tungstates,” Talanta, Vol. 21, No. 1, 1974, pp. 102-106. doi:10.1016/0039-9140(74)80069-X
[19] A. A. Khan and M. M. Alam, “Synthesis, Characterization and Analytical Applications of a New and Novel ‘Organic-Inorganic’ Composite Material as a Cation Exchanger and Cd(II) Ion-Selective Membrane Electrode: Polyaniline Sn(IV) Tungstoarsenate,” Reactive & Functional Polymers, Vol. 55, No. 3, 2003, pp. 277-290. doi:10.1016/S1381-5148(03)00018-X
[20] I. M. Ali, “Synthesis and Sorption Behavior of Semicrystalline Sodium Titanate as a New Cation Exchanger,” Journal of Radioanalytical and Nuclear Chemistry, Vol. 260, No. 1, 2004, pp. 149-157. doi:10.1023/B:JRNC.0000027074.36548.29
[21] M. Qureshi, J. P. Gupta and V. Sharma, “Comparison of the Ion-Exchange Behaviour of Zirconium, Thorium, Vanadium, Uranium, Stannic and Titanium Tungstates,” Talanta, Vol. 21, No. 1, 1974, pp. 102-106. doi:10.1016/0039-9140(74)80069-X
[22] T. M?ller, A. Clearfield and R. Harjula, “Preparation of Hydrous Mixed Metal Oxides of Sb, Nb, Si, Ti and W with a Pyrochlore Structure and Exchange of Radioactive Cesium and Strontium Ions into the Materials,” Microporous and Mesoporous Materials, Vol. 54, No. 1, 2002, pp. 187-199. doi:10.1016/S1387-1811(02)00320-7
[23] I. M. El-Naggar and M. M. Abou-Mesalam, “Novel Inorganic Ion Exchange Materials Based on Silicates; Synthesis, Structure and Analytical Applications of Magneso-Silicate and Magnesium Alumino-Silicate Sorbents,” Journal of Hazardous Material, Vol. 149, No. 3, 2007, pp. 686-692. doi:10.1016/j.jhazmat.2007.04.029
[24] E. S. Zakaria, I. M. Ali and I. M. El-Naggar, “Thermodynamics and Ion Exchange Equilibria of Gd3+, Eu3+ and Ce3+ Ions on H+ Form of Titanium(IV) Antimonate,” Colloids and Surfaces A, Vol. 210, No. 1, 2002, pp. 33- 40. doi:10.1016/S0927-7757(02)00216-9
[25] E. S. Zakaria, I. M. Ali and H. F. Aly, “Kinetic Aspects and Swelling Changes of Magnesium and Cerium Titano-Antimonates in Aqueous and Mixed Solvents,” Journal of Colloid and Interface Science, Vol. 338, No. 2, 2009, pp. 346-352. doi:10.1016/j.jcis.2009.06.031
[26] I. M. El-Naggar, E. S. Zakaria, I. M. Ali, M. Khalil and M. F. El-Shahat, “Kinetic Modeling Analysis for the Removal of Cesium Ions from Aqueous Solutions Using Polyaniline Titanotungstate,” Arabian Journal of Chemistry, Vol. 5, No. 1, 2010, pp. 109-119. doi:10.1016/j.arabjc.2010.09.028
[27] I. M. Ali, E. S. Zakaria, M. M. Ibrahim and I. M. El-Naggar, “Synthesis, Structure, Dehydration Transformations and Ion Exchange Characteristics of Iron-Silicate with Various Si and Fe Contents as Mixed Oxides,” Polyhedron, Vol. 27, No. 1, 2008, pp. 429-439. doi:10.1016/j.poly.2007.09.034
[28] R. G. Dosch, N. E. Brown, H. P. Stephens and R. G. Anthony, Sandia National Laboratories Report, SAND92-2737C, 1992.
[29] I. M. Ali, “Sorption Studies of 134Cs, 60Co and 152 + 154Eu on Phosphoric Acid Activated Silico-Antimonate Crystals in High Acidic Media,” Chemical Engineering Journal, Vol. 155, No. 3, 2009, pp. 580-585. doi:10.1016/j.cej.2009.07.050
[30] S. A. Shady, “Selectivity of Cesium from Fission Radionuclides Using Resorcinol-Formaldehyde and Zirconyl-Mo-lybdopyrophosphate as Ion-Exchangers,” Jour- nal of Hazardous Material, Vol. 167, 2009, pp. 947-952.
[31] M. G. Marageh, S. W. Husaina and A. R. Khanchi, “The Use of Clinoptilolite and Its Sodium form for Removal of Radioactive Cesium, and Strontium from Nuclear Wastewater and Pb2+, Ni2+, Cd2+, Ba2+ from Municipal Wastewater,” Applied Radiation and Isotopes, Vol. 50, No. 4, 1999, pp. 655-660. doi:10.1016/S0969-8043(98)00134-1
[32] S. Lahiri, K. Roy, S. Bhattacharya, S. Maji and S. Basu, “Separation of 134Cs and 152Eu Using Inorganic Ion Exchangers, Zirconium Vanadate and Ceric Vanadate,” Applied Radiation and Isotopes, Vol. 63, No. 3, 2005, pp. 293-297. doi:10.1016/j.apradiso.2005.03.007
[33] S. A. I. Khan and A. A. Khan, “Synthesis, Characterization and Ion-Exchange Properties of a New and Novel ‘Organic–Inorganic’ Hybrid Cation-Exchanger: Nylon- 6,6, Zr(IV) Phosphate,” Talanta, Vol. 71, No. 2, 2007, pp. 841-847. doi:10.1016/j.talanta.2006.05.042
[34] Z. Alam, Inamuddin and S. A. Nabi, “Synthesis and Characterization of a Thermally Stable Strongly Acidic Cd(II) Ion Selective Composite Cation-Exchanger: Polyaniline Ce(IV) Molybdate,” Desalination, Vol. 250, No. 2, 2010, pp. 515-522. doi:10.1016/j.desal.2008.09.008
[35] A. M. Khan, S. A. Ganai and S. A. Nabi, “Synthesis of a Crystalline Organic–Inorganic Composite Exchanger, Acrylamide Stannic Silicomolybdate: Binary and Quantitative Separation of Metal Ions,” Colloids and Surfaces A, Vol. 337, No. 1-3, 2009, pp. 141-145. doi:10.1016/j.colsurfa.2008.12.012
[36] H. M. F. Freundlich, “Uber Die Adsorption in Losungen, Zeitschrift fur Physikalische Chemie,” Leipzig, Vol. 57A, 1906, pp. 385-470.
[37] I. Langmuir, “The Constitution and Fundamental Properties of Solids and Liquids,” Journal of the American Chemical Society, Vol. 38, No. 11, 1916, pp. 2221-2295. doi:10.1021/ja02268a002
[38] M. S. Bilgili, “Adsorption of 4-Chlorophenol from Aqueous Solutions by Xad-4 Resin: Isotherm, Kinetic, and Thermodynamic Analysis,” Journal of Hazardous Materials, Vol. 137, No. 1, 2006, pp. 157-164. doi:10.1016/j.jhazmat.2006.01.005
[39] R. E. Treybal, “Mass Transfer Operations,” McGraw-Hill, New York, 1987.
[40] B. Al-Duri, “Use of Adsorbents for the Removal of Pollutants from Wastewaters,” In: G. McKay, Ed., CRC Press, 1996, p.133.
[41] I. M. El-Naggar, G. M. Ibrahima, E. A. El-Kadya and E. A. Hegazyb, “Sorption Mechanism of Cs+, Co2+ and Eu3+ ions onto EGIB Sorbent,” Desalination, Vol. 237, No. 1, 2009, pp. 147-154. doi:10.1016/j.desal.2007.11.057
[42] D. Mohan and K. P. Singh, “Single- and Multi-Component Adsorption of Cadmium and Zinc Using Activated Carbon Derived from Bagasse—An Agricultural Waste,” Water Research, Vol. 36, No. 9, 2002, pp. 2304-2318. doi:10.1016/S0043-1354(01)00447-X
[43] D. Mohan and S. Chander, “Single, Binary, and Multicomponent Sorption of Iron and Manganese on Lignite,” Journal of Colloid and Interface Science, Vol. 299, No. 1, 2006, pp. 76-87. doi:10.1016/j.jcis.2006.02.010
[44] S. M. Hasany, M. M. Saeed and M. Ahmed, “Sorption and Thermodynamic Behavior of Zinc(II)-Thiocyanate Complexes onto Polyurethane Foam from Acidic Solutions,” Journal of Radioanalytical and Nuclear Chemistry, Vol. 252, No. 3, 2002, pp. 477-484. doi:10.1023/A:1015890317697
[45] I. M. El-Naggar and M. M. Abou-Mesalam, “Novel Inorganic Ion Exchange Materials Based on Silicates; Synthesis, Structure and Analytical Applications of Magneso-Silicate and Magnesium Alumino-Silicate Sorbents,” Journal of Hazardous Material, Vol. 149, No. 3, 2007, pp. 686-692. doi:10.1016/j.jhazmat.2007.04.029
[46] S. Netpradit, P. Thiravetyan and S. Towprayoon, “Evaluation of Metal Hydroxide Sludge for Reactive Dye Adsorption in a Fixed-Bed Column System,” Water Research, Vol. 38, No. 1, 2004, pp. 71-78. doi:10.1016/j.watres.2003.09.007
[47] I. M. Ali, “Sorption Studies of 134Cs, 60Co and 152+154Eu on Phosphoric Acid Activated Silico-Antimonate Crystals in High Acidic Media,” Chemical Engineering Journal, Vol. 155, No. 3, 2009, pp. 580-585. doi:10.1016/j.cej.2009.07.050
[48] T. J. Trantera, R. S. Herbsta, T. A. Todda, A. L. Olsona and H. B. Eldredge, “Evaluation of Ammonium Molybdophosphate-Polyacrylonitrile (AMP-PAN) as a Cesium Selective Sorbent for the Removal of 137Cs from Acidic Nuclear Waste Solutions,” Advances in Environmental Research, Vol. 6, No. 2, 2002, pp. 107-121. doi:10.1016/S1093-0191(00)00073-3
[49] F. Helfferich, “Ion Exchange,” McGraw-Hill, New York, 1962.
[50] I. M. El-Naggar, E. I. Shabana and M. I. El-Dessouky, “Ion Exchange Behaviour of Hydrous Tin Oxide: Kinetics of Anion Exchange,” Talanta, Vol. 39, No. 6, 1992, pp. 653-657. doi:10.1016/0039-9140(92)80076-P
[51] E. S. Zakaria, I. M. Ali and H. F. Aly, “Kinetic Study of the Isotopic Exchange of Na+ and Zn2+ Ions on Iron and Chromium Titanates,” Journal of Radioanalytical and Nuclear Chemistry, Vol. 260, No. 2, 2004, pp. 389-397. doi:10.1023/B:JRNC.0000027114.32878.d2
[52] M. D. Kaminski, L. Nunez, M. Pourfarzaneh and C. Negri, “Cesium Separation from Contaminated Milk Using Magnetic Particles Containing Crystalline Silicotitanates,” Separation and Purification Technology, Vol. 21, No. 1-2, 2000, pp. 1-8. doi:10.1016/S1383-5866(99)00062-3

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.