Changes in A2A adenosine receptor parameters in patients affected by bipolar disorders: Correlation with antipsychotic dosage and severity of illness

Abstract

Typical antipsychotics, potent D2 dopamine receptor antagonists, are the most commonly used drugs in the treatment of bipolar disorders. In the central nervous system, the discovery of antagonistic interactions between A2A adenosine receptors and D2 dopamine receptors suggests that the adenosine system may be involved in the pathogenesis of different psychiatric disorders and in the therapeutic effectiveness of antipsychotic drugs. Previously, we have demonstrated an increase in A2A receptor expression and agonist affinity in platelets from psychotic patients treated with haloperidol. This result suggests that there is also a structural and functional interaction between A2A and D2 receptors in peripheral cells. In this work, we investigated the effect of different doses of typical drugs on A2A adenosine receptor binding and correlated these parameters with the severity of symptoms. We demonstrated, for the first time, that there was a strong correlation between A2A receptor affinity constant values (Kd) and drug doses in psychotic patients with a moderate severity of illness and moderate psychotic symptoms. The correlation was completely lost in patients with severe illness and severe psychotic symptoms. These results demonstrated that in platelets of patients affected by psychosis, typical antipsychotics modulated A2A receptor binding parameters; this regulation is dependent on the degree of D2 receptor occupancy in relation to the severity of psychotic symptoms, suggesting A2A receptors are a peripheral marker for individual therapy effectiveness.

Share and Cite:

Trincavelli, M. , Daniele, S. , Ciapparelli, A. , Dell’Osso, M. , Massimetti, G. , Marazziti, D. , Dell’Osso, L. and Martini, C. (2012) Changes in A2A adenosine receptor parameters in patients affected by bipolar disorders: Correlation with antipsychotic dosage and severity of illness. Open Journal of Psychiatry, 2, 1-8. doi: 10.4236/ojpsych.2012.21001.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Post, R.M. (2007) Kindling and sensitization as models for affective episode recurrence,cyclicity, and tolerance phenomena. Neuroscience Biobehavioral Review, 31, 858-873. doi:10.1016/j.neubiorev.2007.04.003
[2] Simonato, M., Varani, K., Muzzolini, A., Bianchi, C., Beani, L. and Borea, P.A. (1994) Adenosine A1 receptors in the rat brain in the kindling model of epilepsy. European Journal of Pharmacology, 265, 121-124. doi:10.1016/0014-2999(94)90421-9
[3] Whitcomb, K. Lupica, C.R. Rosen, J.B. and Berman, R.F. (1990) Adenosine involvement in postictal events in amygdala-kindled rats. Epilepsy Research, 6, 171-179. doi:10.1016/0920-1211(90)90070-C
[4] Kulkarni, C., David, J. and Joseph, T. (1997) Influence of adenosine, dipyridamole, adenosine antagonists and antiepileptic drugs on EEG after discharge following cortical stimulation. Indian Journal Experimental Biology, 35, 342-347.
[5] Kilzieh, N. and Akiskal, H.S. (1999) Rapid-cycling bipolar disorder. An overview of research and clinical experience. Psychiatric Clinic North America, 22, 585-607. doi:10.1016/S0193-953X(05)70097-6
[6] Tondo, L. and Rudas, N. (1991) The course of a seasonal bipolar disorder influenced by caffeine. Journal of Affective Disorders, 22, 249-251. doi:10.1016/0165-0327(91)90071-Y
[7] Brooks, S.C., Linn, J.J. and Disney, N. (1978) Serotonin, folic acid, and uric acid metabolism in the diagnosis of neuropsychiatric disorders. Biological Psychiatry, 13, 671-684.
[8] Machado-Vieira, R., Lara, D.R., Souza, D.O. and Kapczinski, F. (2001) Therapeutic efficacy of allopurinol in mania associated with hyperuricemia. Journal of Clinical Psychopharmacology, 21, 621-622. doi:10.1097/00004714-200112000-00017
[9] Akhondzadeh, S., Milajerdi, M.R., Amini, H. and Tehrani-Doost, M. (2006) Allopurinol as an adjunct to lithiumand haloperidol for treatment of patients with acutemania: A double-blind, randomized, placebo-controlled trial. Bipolar Disorders, 8, 485-489. doi:10.1111/j.1399-5618.2006.00363.x
[10] Ferre, S., Ciruela, F., Canals, M., Marcellino, D., Burgueno, J., Casado, V., Hillion, J., Torvinen, M., Fanelli, F., Benedetti, Pd.P., Goldberg, S.R., Bouvier, M., Fuxe, K., Agnati, L.F., Lluis, C., Franco, R. and Woods, A. (2004) Adenosine A2A-dopamine D2 receptor-receptor heteromers. Targets for neuro-psychiatric disorders. Parkinsonism & Related Disorders, 10, 265-271. doi:10.1016/j.parkreldis.2004.02.014
[11] Cunha, R.A., Ferré, S., Vaugeois, J.M. and Chen, J.F. (2008) Potential therapeutic interest of adenosine A2A receptors in psychiatric disorders. Current Pharmaceutical Design, 14, 1512-1524. doi:10.2174/138161208784480090
[12] Shen, H.Y. and Chen, J.F. (2009) Adenosine A2A receptors in psychopharmacology: modulators of behaviour, mood and cognition. Current Neuropharmacology, 7, 195-206. doi:10.2174/157015909789152191
[13] Fuxe, K., Marcellino, D., Borroto-Escuela, D.O., Guescini, M., Fernandez-Duenas, V., Tanganelli, S., Rivera, A., Ciruela, F. and Agnati, L.F. (2010) Adenosine-do-pamine interactions in the pathophysiology and treatment of CNS disorders. CNS Neuroscience & Therapeutics, 16, e18-e42. doi:10.1111/j.1755-5949.2009.00126.x
[14] Canals, M., Marcellino, D., Fanelli, F., Ciruela, F., de Benedetti, P., Goldberg, S.R., Neve, K., Fuxe, K., Agnati, L.F., Woods, A.S., Ferré, S., Lluis, C., Bouvier, M. and Franco, R. (2003) Adenosine A2A-dopamine D2 receptor-receptor heteromerization: Qualitative and quantitative assessment by fluorescence and bioluminescence energy transfer. Journal of Biological Chemistry, 278, 46741-46749. doi:10.1074/jbc.M306451200
[15] Kamiya, T., Saitoh, O., Yoshioka, K. and Nakata, H. (2003) Oligomerization of adenosine A2A and dopamine D2 receptors in living cells. Biochemical and Biophysical Research Communication, 306, 544-549. doi:10.1016/S0006-291X(03)00991-4
[16] Cabello, N., Gandia, J., Bertarelli, D.C., Watanabe, M., Lluís, C., Franco, R., Ferre, S., Lujan, R. and Ciruela, F. (2009) Metabotropic glutamate type 5, dopamine D2 and adenosine A2A receptors form higher-order oligomers in living cells. Journal of Neurochemistry, 109, 1497-1507. doi:10.1111/j.1471-4159.2009.06078.x
[17] Fuxe, K., Ferre, S., Genedani, S., Franco, R. and Agnati, L.F. (2007) Adenosine receptor-dopamine receptor interactions in the basal ganglia and their relevance for brain function. Physiology & Behaviour, 92, 210-217. doi:10.1016/j.physbeh.2007.05.034
[18] Trincavelli, M.L., Cuboni, S., Catena Dell’Osso, M., Maggio, R., Klotz, K.N., Novi, F., Panighini, A., Daniele, S. and Martini, C. (2010) Receptor crosstalk: Haloperidol treatment enhances A2A adenosine receptor functioning in a transfected cell model. Purinergic Signalling, 6, 373-381. doi:10.1007/s11302-010-9201-z
[19] Martini, C., Tuscano, D., Trincavelli, M.L., Cerrai, E., Bianchi, M., Ciapparelli, A., Lucioni, A., Novelli, L., Catena, M., Lucacchini, A., Cassano, G.B. and Dell’Osso, L. (2006) Upregulation of A2A adenosine receptors in platelets from patients affected by bipolar disorders under treatment with typical antipsychotics. Journal of Psychiatric Research, 40, 81-88. doi:10.1016/j.jpsychires.2004.12.008
[20] Guy, W. (1976) ECDEU assessment manual for psychopharmacology, revised 1976. National Institutes of Mental Health, Rockville.
[21] Overall, J.E. and Gorham, D.R. (1962) The brief psychiatric rating scale. Psychological Reports, 10, 799-812. doi:10.2466/PR0.10.3.799-812
[22] Varani, K., Gessi, S., Dalpiaz, A. and Borea, P.A. (1996) Pharmacological and biochemical characterization of purified A2A adenosine receptors in human platelet membranes by [3H]-CGS 21680 binding. British Journal of Pharmacology, 117, 1693-1701.
[23] Lara, D.R., Dall’Igna, O.P., Ghisolfi, E.S. and Brunstein, M.G. (2006) Involvement of adenosine in the neurobiology of schizophrenia and its therapeutic implications. Progress in Neuro-psychopharmacology & Biological Psychiatry, 30, 617-629. doi:10.1016/j.pnpbp.2006.02.002
[24] Lara, D.R. and Souza, D.O. (2000) Schizophrenia: A purinergic hypothesis. Medical Hypotheses, 54, 157-166. doi:10.1054/mehy.1999.0003
[25] Parsons, B., Togasaki, D.M., Kassir, S. and Przedborski, S. (1995) Neuroleptics upregulate adenosine A2A receptors in rat striatum: Implications for the mechanism and the treatment of tardive dyskinesia. Journal of Neurochemistry, 65, 2057-2064. doi:10.1046/j.1471-4159.1995.65052057.x
[26] Kurumaji, A. and Toru, M. (1998) An increase in [3H] CGS21680 binding in the striatum of postmortem brains of chronic schizophrenics. Brain Research, 808, 320-323. doi:10.1016/S0006-8993(98)00840-3
[27] Deckert, J., Brenner, M., Durany, N., Zochling, R., Paulus, W., Ransmayr, G., Tatschner, T., Danielczyk, W., Jellinger, K. and Riederer, P. (2003) Up-regulation of striatal adenosine A2A receptors in schizophrenia. Neuroreport, 14, 313-316. doi:10.1097/00001756-200303030-00003
[28] Urigüen, L., García-Fuster, M.J., Callado, L.F., Morentin, B., La Harpe, R., Casadó, V., Lluis, C., Franco, R., García-Sevilla, J.A. and Meana, J.J. (2009) Immunodensity and mRNA expression of A2A adenosine, D2 dopamine, and CB1 cannabinoid receptors in postmortem frontal cortex of subjects with schizophrenia: Effect of antipsychotic treatment. Psychopharmacology (Berl), 206, 313-324. doi:10.1007/s00213-009-1608-2
[29] Fink, J.S., Weaver, D.R., Rivkees, S.A., Peterfreund, R.A., Pollack, A.E., Adler, E.M. and Reppert, S.M. (1992) Molecular cloning of the rat A2 adenosine receptor: Selective co-expression with D 2 dopamine receptors in rat striatum. Brain Research Molecular Brain Research, 14, 186-195. doi:10.1016/0169-328X(92)90173-9
[30] Tsai, S.J. (2005) Adenosine A2A receptor/dopamine D2 receptor hetero-oligomerization: A hypothesis that may explain behavioral sensitization to psychostimulants and schizophrenia. Medical Hypotheses, 64, 197-200. doi:10.1016/j.mehy.2004.04.018
[31] Genedani, S., Guidolin, D., Leo, G., Filaferro, M., Torvinen, M., Woods, A.S., Fuxe, K., Ferre, S. and Agnati, L.F. (2005) Computer-assisted image analysis of caveolin-1 involvement in the internalization process of adenosine A2A-dopamine D2 receptor heterodimers. Journal of Molecular Neuroscience, 26, 177-184. doi:10.1385/JMN:26:2-3:177
[32] Navarro, G., Carriba, P., Gandía, J., Ciruela, F., Casadó, V., Cortés, A., Mallol, J., Canela, E.I., Lluis, C. and Franco, R. (2008) Detection of heteromers formed by cannabinoid CB1, dopamine D2, and adenosine A2A G-protein-coupled receptors by combining bimolecular fluorescence complementation and bioluminescence energy transfer. Scientific World Journal, 8, 1088-1097. doi:10.1100/tsw.2008.136
[33] Vidi, P.A., Chemel, B.R., Hu, C.D. and Watts, V.J. (2008) Ligand-dependent oligomerization of dopamine D2 and adenosine A2A receptors in living neuronal cells. Molecular Pharmacology, 74, 544-551. doi:10.1124/mol.108.047472
[34] Farde, L., Nordstrom, A.L., Wiesel, F.A., Pauli, S., Halldin, C. and Sedvall, G. (1992) Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine. Relation to extrapyramidal side effects. Archives of General Psychiatry, 49, 538-544. doi:10.1001/archpsyc.1992.01820070032005
[35] Nordstrom, A.L., Farde, L., Wiesel, F.A., Forslund, K., Pauli, S., Halldin, C. and Uppfeldt, G. (1993) Central D2-dopamine receptor occupancy in relation to antipsychotic drug effects: A double-blind PET study of schizophrenic patients. Biological Psychiatry, 33, 227-235. doi:10.1016/0006-3223(93)90288-O
[36] Kessler, R.M., Ansari, M.S., Riccardi, P., Li, R., Jayathilake, K., Dawant, B. and Meltzer, H.Y. (2006) Occupancy of striatal and extrastriatal dopamine D2 receptors by clozapine and quetiapine. Neuropsychopharmacology, 31, 1991-2001. doi:10.1038/sj.npp.1301108
[37] Catafau, A.M., Penengo, M.M., Nucci, G., Bullich, S., Corripio, I., Parellada, E., García-Ribera, C., Gomeni, R. and Merlo-Pich, E. (2008) Pharmacokinetics and time-course of D2 receptor occupancy induced by atypical antipsychotics in stabilized schizophrenic patients. Journal of Psychopharmacology, 22, 882-894. doi:10.1177/0269881107083810
[38] Assié, M.B., Dominguez, H., Consul-Denjean, N. and Newman-Tancredi, A. (2006) In vivo occupancy of dopamine D2 receptors by antipsychotic drugs and novel compounds in the mouse striatum and olfactory tubercles. Naunyn-Schmiedeberg’s archives of Pharmacology, 373, 441-450. doi:10.1007/s00210-006-0092-z
[39] Gefvert, O., Eriksson, B., Persson, P., Helldin, L., Bjorner, A., Mannaert, E., Remmerie, B., Eerdekens, M. and Nyberg, S. (2005) Pharmacokinetics and D2 receptor occupancy of long-acting injectable risperidone (Risperdal Consta) in patients with schizophrenia. International Journal of Neuropsychopharmacology, 8, 27-36. doi:10.1017/S1461145704004924
[40] Kapur, S. and Seeman, P. (2001) Does fast dissociation from the dopamine D2 receptor explain the action of atypical antipsychotics? A new hypothesis. American Journal of Psychiatry, 158, 360-369. doi:10.1176/appi.ajp.158.3.360
[41] Baron, J.C., Martinot, J.L., Cambon, H., Boulenger, J.P., Poirier, M.F., Caillard, V., Blin, J., Huret, J.D., Loc’h, C. and Maziere, B. (1989) Striatal dopamine receptor occupancy during and following withdrawal from neuroleptic treatment: Correlative evaluation by positron emission tomography and plasma prolactin levels. Psychopharmacology, 99, 463-472. doi:10.1007/BF00589893
[42] Farde, L. and Nordstrom, A.L. (1992) PET analysis indicates atypical central dopamine receptor occupancy in clozapine-treated patients. British Journal of Psychiatry, 17, 30-33.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.