Graft Copolymerization of N,N-Dimethylacrylamide to Cellulose in Homogeneous Media Using Atom Transfer Radical Polymerization for Hemocompatibility

Abstract

In homogeneous media, N,N-Dimethylacrylamide (DMA) was grafted copolymerization to cellulose by a metal-catalyzed atom transfer radical polymerization (ATRP) process. First, cellulose was dissolved in DMAc/LiCl system, and it reacted with 2-bromoisobutyloyl bromide (BiBBr) to produce macroinitiator (cell-BiB). Then DMA was polymerized to the cellulose backbone in a homogeneous DMSO solution in presence of the cell-BiB. Characterization with FT-IR, NMR, and GPC measurements showed that there obtained a graft copolymer with cellulose backbone and PDMA side chains (cell-PDMA) in well-defined structure. The proteins adsorption studies showed that the cellulose membranes modified by the as-prepared cell-PDMA copolymer owns good protein adsorption resistancet.

Share and Cite:

Yan, L. and Wei, T. (2008) Graft Copolymerization of N,N-Dimethylacrylamide to Cellulose in Homogeneous Media Using Atom Transfer Radical Polymerization for Hemocompatibility. Journal of Biomedical Science and Engineering, 1, 37-43. doi: 10.4236/jbise.2008.11006.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] D.W. Jenkins, S.M. Hudson, 2001. Review of vinyl graft copolymerization featuring recent advances toward controlled radical-based reactions and illustrated with chitin/chitosan trunk polymers. Chem Rev, 101: 3245-3273.
[2] Z.H. Hu, L.M. Zhang, 2002. Water-soluble ampholytic grafted polysaccharides. II. Synthesis and characterization of graft terpolymers of starch with acrylamide and [2-(methacryloylox)] ethyl dimethyl (3-sulfopropyl) ammonium hydroxide. J Macromol Sci Pure Appl Chem, A39: 419-430.
[3] D. Roy, J. T. Guthrie, S. Perrier. 2005. Graft polymerization: grafting poly(styrene) from cellulose via RAFT polymerization. Macromolecules, 38:10363-10372;
[4] J. Qiu, B. Charleux, K. Matyjaszewski, 2001. Controlled/living radical polymerization in aqueous media: homogeneous and heterogeneous system. Prog Polym Sci, 26, 2083-2134.
[5] D. Roy, J.T. Guthrie, S. Perrier, 2006. RAFT graft polymerization of 2-(Dimethylaminoethyl) Methacrylate onto cellulose fibre, Aust J Chem, 59: 737-741.
[6] A. Carlmark, E.E. Malmstrom, 2003. ATRP grafting from cellulose fibers to create block-copolymer grafts. Biomacromolecules, 4: 1740-1745.
[7] D.W. Shen, H. Yu, Y. Huang, 2005. Densely grafting copolymers of ethyl cellulose through atom transfer radical polymerization. J Polym Sci Part A Polym Chem, 43:4099-4108; D. Shen, H. Yu, Y. Huang, 2006.
[8] T. Aoki, H.K. Kawashima, H. Katono, K. Sanui, N. Igata, T. Okano, Y. Sakurai 1994. Temperature-Responsive Interpentrating Polymer Networks Constructed with Poly(Acrylic Acid) and Poly(N,N-Dimethylacrylamide). Macromolecules, 27: 947-952.
[9] M.S. Donovan, T.A. Sanford, A.B. Lowe, B.S. Sumerlin, Y. Mitsukami, C.L. McCormick, 2002. RAFT polymerization of N,N-dimethylacrylamide in water Macromolecules, 35: 4570-4572.
[10] S.J. Ding, M. Radosz, Y.Q. Shen, 2004. Atom transfer radical polymerization of N,N-dimethylacrylamide. Macromole Rapid Commun, 25: 632-636.
[11] J. N. Kizhakkedathu, D. E. Brooks, 2003. Synthesis of poly(N,N-dimethylacrylamide) brushes from charged polymeric surfaces by aqueous ATRP: Effect of surface initiator concentration. Macromolecules,36: 591-598.
[12] T. Nishimura,. In Biomedical Applications of Polymeric Materials, T. Tsuruta,; T.Hayashi,; K.Kataoka,; K Ishihara,.; Y.Kimura, , Eds.; CRC Press, Boca Raton, 1993.
[13] P. Delanaye, B. Lambermount, J. M.Dongne, B.Dubois, A.Ghuysen, N. Janssen, T. Desaive, P. Kolh, V.D’Drio, J. M. Krzesinki, 2006. Int. J. Artif. Organs, 29, 944.
[14] H.D. Humes, W.H. Fissell, K. Tiranathanagul, 2006. The future of hemodialysis membranes. Kidney Int, 69:1115-1119.
[15] F.C. Kung, W.L. Chou, M.C. Yang, 2006. In vitro evaluation of cellulose acetate hemodialyzer immobilized with heparin. Polym Adv Tech, 17: 453-462.
[16] J. Yuan, J. Zhang, X.P. Zang, J. Shen, S. Lin,,2003. Improvement of blood compatibility on cellulose membrane surface by grafting betaines. Colloids Surf B Biointerf, 30:147-155.
[17] T. Furuzono, K. Ishihara, N. Nakabayashi, Y. Tamada, 2000. Chemical modification of silk fibroin with 2-methacryloyloxyethyl phosphorylcholine. II. Craft-polymerization onto fabric through 2-methacryloyloxyethyl isocyanate and interaction between fabric and platelets. Biomaterials, 21:327-333.
[18] K. Ishiahra, R. Aragaki, T. Ueda, A. Watanabe, N. Nakabayashi, 1990. Reduced thrombogenicity of polymers having phospholipid polar groups. J Biomed Mater Res, 24:1069-1077.
[19] Z. H. Qi, 2001. Synthesis of CA by solid acid catalyst. BS Thesis, University of Science and Technology of China.
[20] K. Fukumoto, K. Ishihara, R. Takayama, J. Aoki, N. Nakabayashi,1992. Improvement of blood compatibility on cellulose dialysis membrane.2.blood compatibility of phospholipid polymer grafted cellulose membrane. Biomaterials, 13: 235-239.
[21] P. Vlcek, M. Janata, P. Latalova, J. Kriz, E. Cadova, L. Toman, 2006. Controlled grafting of cellulose diacetate. Polymer, 47:2587-2595.
[22] D. Bontempo, G. Masci, P.D. Leonardis, L. Mannina, D. Capitani, V. Crescenzi, 2006. Versatile grafting of polysaccharides in homogeneous mild conditions by using atom transfer radical polymerization. Biomacromolecules, 7:2154-2161.
[23] E. Meaurio, L.C. Cesteros, I. Katime, 1997. FTIR study of hydrogen bonding of blends of poly(mono n-alkyl itaconates) with poly(N,N-dimethylacrylamide) and poly(ethyloxazoline). Macromolecules, 30:4567-4573.
[24] Huynh-Ba-Gia, J.E. McGraph, 1980. High resolution NMR spectra of poly n,n-dimethylacrylamide in CDCl3 solution. Polym Bull, 2:837-840.
[25] B.L.Rivas, S.A. Pooley, M. Soto, H.A. Maturana, K.E. Geckeler. 1998. Poly(N,N’-dimethylacrylamide-co-acrylic acid): Synthesis, characterization, and application for the removal and separation of inorganic ions in aqueous solution. J Appl Polym Sci, 67:93-100.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.