Journal of Modern Physics

Volume 5, Issue 14 (August 2014)

ISSN Print: 2153-1196   ISSN Online: 2153-120X

Google-based Impact Factor: 0.86  Citations  h5-index & Ranking

Power Balance of Multi-Harmonic Components in Nonlinear Network

HTML  Download Download as PDF (Size: 3713KB)  PP. 1321-1331  
DOI: 10.4236/jmp.2014.514132    2,739 Downloads   3,408 Views  Citations

ABSTRACT

The main harmonic components in nonlinear differential equations can be solved by using the harmonic balance principle. The nonlinear coupling relation among various harmonics can be found by balance theorem of frequency domain. The superhet receiver circuits which are described by nonlinear differential equation of comprising even degree terms include three main harmonic components: the difference frequency and two signal frequencies. Based on the nonlinear coupling relation, taking superhet circuit as an example, this paper demonstrates that the every one of three main harmonics in networks must individually observe conservation of complex power. The power of difference frequency is from variable-frequency device. And total dissipative power of each harmonic is equal to zero. These conclusions can also be verified by the traditional harmonic analysis. The oscillation solutions which consist of the mixture of three main harmonics possess very long oscillation period, the spectral distribution are very tight, similar to evolution from doubling period leading to chaos. It can be illustrated that the chaos is sufficient or infinite extension of the oscillation period. In fact, the oscillation solutions plotted by numerical simulation all are certainly a periodic function of discrete spectrum. When phase portrait plotted hasn’t finished one cycle, it is shown as aperiodic chaos.

Share and Cite:

Huang, B. and He, X. (2014) Power Balance of Multi-Harmonic Components in Nonlinear Network. Journal of Modern Physics, 5, 1321-1331. doi: 10.4236/jmp.2014.514132.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.