Advances in Bioscience and Biotechnology

Volume 4, Issue 3 (March 2013)

ISSN Print: 2156-8456   ISSN Online: 2156-8502

Google-based Impact Factor: 1.18  Citations  h5-index & Ranking

HCS strategy targeting dysregulation of the VHL/HIF pathway for drug discovery

HTML  XML Download Download as PDF (Size: 1207KB)  PP. 398-405  
DOI: 10.4236/abb.2013.43053    4,771 Downloads   7,221 Views  Citations

ABSTRACT

One-third of top-selling drugs are derived from natural products. When only a fraction of the bioactive natural products diversity has been explored, huge opportunities still remain for discovering novel leads for the development of new drugs. Clear cell renal cell carcinoma (ccRCC) is a highly vascular tumour arising from epithelial elements. Mutations in the Von Hippel-Lindau (VHL) gene are responsible for VHL disease and arise in the majority of Renal Cell Carcinoma (RCC) as well as in other types of cancer. Renal carcinoma cell lines with naturally occurring VHL mutations (RCC4 VA) and their genetically matched wild-type VHL (RCC4 VHL) counterparts were seeded onto 96-well plates and allowed to attach overnight. Fungal extracts were tested on both cell lines. Clinically useful antitumor agents were used as positive controls and as reference points to establish the efficacy and selectivity of the new compounds. Renal cell carcinoma cell lines expressing VHL or not were treated with Carboxyfluorescein succinimidyl ester (CFSE). The day after cell inoculation, extracts were added and during the following days of incubation, fluorescence intensity was measured as a surrogate marker for cell viability. The most promising extracts selectively inhibited growth of pVHL-defi- cient cells but not of wild-type VHL cells. We used High Content Bio-imaging, a complete cellular imaging workflow that integrates instruments and software to acquire and analyze images, to evaluate their effect. Cell imaging can reveal effects that would be overlooked by other cell assay approaches. This target-based whole cell screen is a new strategy, which ensures cell permeability and target selectivity especially in natural product screening where natural product purification is a labour of extensive work. This approach permitted a dynamic study where fluorescence was measured without affecting cell viability and enabling a better detection of cytotoxic effects such as autophagy, senescence or late apoptosis.

Share and Cite:

Cautain, B. , Pedro, N. , Escalona, M. , Tormo, J. , Genilloud, O. and Vicente, F. (2013) HCS strategy targeting dysregulation of the VHL/HIF pathway for drug discovery. Advances in Bioscience and Biotechnology, 4, 398-405. doi: 10.4236/abb.2013.43053.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.