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Abstract 

Experimental data from the National Air Surveillance Network of Japan from 1974 to 1996 and from inde-
pendent measurements performed simultaneously in the regions of Ljubljana (Slovenia), Odessa (Ukraine) 
and the Ukrainian “Academician Vernadsky” Antarctic station (64˚15'W; 65˚15'S), where the air elemental 
composition was determined by the standard method of atmospheric particulate matter (PM) collection on 
nucleopore filters and subsequent neutron activation analysis, were analyzed. Comparative analysis of dif-
ferent pairs of atmospheric PM element concentration data sets, measured in different regions of the Earth, 
revealed a stable linear (on a logarithmic scale) correlation, showing a power law increase of every atmos-
pheric PM element mass and simultaneously the cause of this increase—fractal nature of atmospheric PM 
genesis. Within the framework of multifractal geometry we show that the mass (volume) of atmospheric PM 
elemental components has a log normal distribution, which on a logarithmic scale with respect to the random 
variable (elemental component mass) is identical to normal distribution. This means that the parameters of 
two-dimensional normal distribution with respect to corresponding atmospheric PM-multifractal elemental 
components measured in different regions, are a priory connected by equations of direct and inverse linear 
regression, and the experimental manifestation of this fact is the linear correlation between the concentra-
tions of the same elemental components in different sets of experimental atmospheric PM data. 
 
Keywords: Atmospheric Aerosols, Multifractal, Neutron activation analysis, South Pole, Ukrainian Antarctic 
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1. Introduction  
 
Analysis of the concentrations of elements characteristics 
of the terrestrial crust, anthropogenic emissions and marine 
elements used in monitoring of the levels of atmospheric 
aerosol contamination indicates that these levels at the two 
extremes of: 1) the Antarctic (South Pole [1]), and 2) the 
global constituent of atmospheric contamination measured 
at continental background stations [2] display similar pat-
terns. A distinction between them is, however, evident and 
consists in that the mean element concentrations in the at-
mosphere over continental background stations (СCB) lo-

cated in different regions of the Earth exceed the corre-
sponding concentrations at the South Pole (СSP) by some 
20 - 1000 times. 

Comparing the concentrations of a given element i in 
atmospheric aerosol from samples {CSP,i} and {CCB,i}, it 
became evident that the dependence of the mean concen-
trations of any particular element from the sample {CSP,i} 
or {CCB,i} on a logarithmic scale is described by a linear 
one, with good precision for any of the elements from a 
given pair of sampling station: 

In  Ini i
CB CB SP CB SP SPC a b C            (1) 

1CB SPb                     (2) #Deceased. 



V. D. RUSOV  ET  AL. 121 
 
where аCB-SP and bCB-SP are the intercept and slope (re-
gression coefficient) of the regression line, respectively. 

This unique and rather unexpected result was first estab-
lished by Pushkin and Mikhailov [2]. It is noteworthy, ac-
cording to [2], that the reason for the large enrichment of 
atmospheric aerosol with those elements which are excep-
tions to the linear dependence, is related mostly either to 
the anthropogenic contribution produced by extensive 
technological activity, e.g. the toxic elements (Sb, Pb, Zn, 
Cd, As, Hg), or to the nearby sea or ocean or sea as a pow-
erful source of marine aerosol components (Na, I, Br, Se, S, 
Hg). 

However, our numerous experimental data specify per-
sistently that the Pushkin-Mikhailov dependence (1) in 
actual fact is the particular case (at b12 = 1) of more general 
of linear regression equation 

  1 12 12 2ln lni i i iC a b C             (3) 

where Сi and i  are the concentration and specific den-
sity of i-th isotope component in atmospheric PM meas-
ured in different regions (the indexes 1 and 2) of the Earth. 

It is obvious, if we will be able to prove that the linear 
relation (3) in element concentrations between the above 
mentioned samples reflects the more general fundamental 
dependence, it can be used for the theoretical and experi-
mental comparison of atmospheric PM independently of 
the given region of the Earth. Moreover, the linear relation 
(3) can become a good indicator of the elements defining 
the level of atmospheric anthropogenic pollution, and 
thereby to become the basis of method for determining a 
pure air standard or, to put it otherwise, the standard of the 
natural level of atmospheric pollution of different suburban 
zones. This is also indicated by the power law character of 
(3), reflecting the fact that the total genesis of non-anthro-
pological (i.e natural) atmospheric aerosols does not de-
pend upon the geography of their origin and is of a fractal 
nature.  

In our opinion, this does not contradict the existing con-
cepts of microphysics of aerosol creation and evolution [3], 
if we consider the fractal structure of secondary (Dp > 1 μm) 
aerosols as structures formed on the prime inoculating cen-
tres, (Dp < 1 μm). Such a division of aerosols into two 
classes—primary and secondary [3]—is very important 
since it plays the key role for understanding of the fractal 
mechanism of secondary aerosol formation, which show 
scaling structure with well-defined typical scales during 
aggregation on inoculating centres (primary aerosols) [4]. 

The objective of this work was twofold: 1) to prove re-
liably the linear validity of (3) through independent meas-
urements with good statistics performed at different lati-
tudes and 2) to substantiate theoretically and to expose the 
fractal mechanism of interrelation between the genesis, size 
and composition of atmospheric PM measured in different 

regions of the Earth, in particular in the vicinity of Odessa 
(Ukraine), Ljubljana (Slovenia) and the Ukrainian Antarc-
tic station “Academician Vernadsky” (64˚15'W; 65˚15'S). 
 
2. The Linear Regression Equation and 

Experimental Data of National Air 
Surveillance Network of Japan  

 
2.1. Selecting a Template 
 
In this study, experimental data [5] from the National Air 
Surveillance Network (NASN) of Japan for selected 
crustal elements (Al, Ca, Fe, Mn, Sc and Ti), anthropo-
genic elements (As, Cu, Cr, Ni, Pb, V and Zn) and a ma-
rine element (Na) in atmospheric particulate matter ob-
tained in Japan for 23 years from 1974 to 1996 were 
evaluated. NASN operated 16 sampling stations (Nop-
poro, Sapporo, Nonotake, Sendai, Niigata, Tokyo, Ka-
wasaki, Nagoya, Kyoto-Hachiman, Osaka, Amagasaki, 
Kurashiki, Matsue, Ube, Chikugo-Ogori and Ohmuta) in 
Japan, at which atmospheric PM were regularly collected 
every month by a low volume air sampler and analyzed 
by neutron activation analysis (NAA) and X-ray fluores-
cence (XRF). During the evaluation, the annual average 
concentration of each element based on 12 monthly av-
eraged data between April (beginning of financial year in 
Japan) and March was taken from NASN data reports. 
The long-term (23 years) average concentrations were 
determined from the annual average concentration of 
each element.  

Analysis of the NASN data [5] shows that the highest 
average concentrations were observed in Kawasaki (Fe, 
Ti, Mn, Cu, Ni and V), Osaka (Na, Cr, Pb and Zn), Oh-
muta (Ca) and Niigata (As), respectively. These cities are 
either industrial or large cities of Japan. Conversely, the 
lowest average concentrations were noticed in Nonotake 
(Al, Ca, Fe, Ti, Cu, Cr, Ni, V and Zn) and Nopporo (Mn, 
As and Pb), as expected [5]. On the basis of these results, 
Nonotake and Nopporo were selected as the base-
line-remote area in Japan. 
A simple model of linear regression, in which the 
evaluations were made by the least squares method [6,7], 
was used to build the linear dependence described by (3). 
The results of NASN data presented on a logarithmic 
scale relative to the data of Nonotake  i

NonotakeC  (see 
Figure 1) show with high confidence the adequacy of 
experimental and theoretical dependence of (3) type. As 
can be seen from Figure 1, the Nonotake station was 
chosen as the baseline, where the lowest concentrations 
of crustal and anthropogenic elements and small of a 
sentence variations in time (23 years) were observed [5]. 
The NASN data are presented in the form of “city-city” 
concentration dependences. 
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Analysis of concentration data for Japanese city at-
mospheric PM unambiguously shows that the i-th ele-
ment mass in atmospheric PM grows by power low, 
proving the assumption [4,8-10] about the fractal nature 
of atmospheric PM genesis. 
 
3. The Linear Regression Equation and the 

Composition of Atmospheric Aerosols in 
Different Regions of the Earth 

 
It is evident that in order to generalize the results from 
NASN data processing more widely, the validity of (3) 
should be checked on the basis of atmospheric aerosol 
studies in performed independent experiments at differ-
ent latitudes. For this reason such studies were performed 
in the regions of Odessa (Ukraine), Ljubljana (Slovenia) 
and the Ukrainian Academecian Vernadsky Antarctic 
station (64˚15'W; 65˚15'S). The determination of the 
element composition of the atmospheric air in these ex-
periments was performed by the traditional method based 

on collection of atmospheric aerosol particles on nu-
cleopore filters with subsequent use of k0-instrumental 
neutron activation analysis. Regression analysis was used 
for processing of the experimental data. 
 
3.1. Experimental 
 
3.1.1. Collection of Atmospheric Aerosol Particles 

on Nucleopore Filters 
For collection of atmospheric aerosolparticles on filters, 
a device of the PM10 type was used with the Gent 
Stacked Filter Unit (SFU) interface [11,12]. The main 
part of this device is a flow-chamber containing an im-
pactor, the throughput capacity of which is equivalent to 
the action of a filter with an aerodynamic pore diameter 
of 10 μm and a 50% aerosol particle collection efficiency 
based on mass, and an SFU interface designed by the 
Norwegian Institute for Air Research (NILU) and con-
taining two filters (Nucleopore) each 47 mm in diameter, 
the first filter with a pore diameter of 8 μm and the sec-  
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Figure 1. Relation between annual concentrations of elements in atmospheric particulate matter over Japan and the same 
data obtained in the region of Nonotake (data from NASN of Japan [5]). In some cases (see text) the concentration of anthro-
pogenic element Cr was excluded from the data. The underlined cities are large industrial centres in the Japan [5].  

 

Figure 2. Schematic representation of the flow-chamber of 
the PM10 type device for air sampling. 

ond filter with 0.4 μm pore diameter. It was experimen-
tally found [12] that such geometry (Figure 2) results in 
an aerosol collection efficiency of the first filter of ap-
proximately 50%, whereas for the second filter this value 
was close to 100% [12]. More detailed results of thor-
ough testing of a similar device can be found in [12]. The 
template is used to format your paper and style the text. 

3.1.2. K0-Instrumental Neutron Activation 
Analysis 

Airborne particulate matter (APM) loaded filters were 
pelleted with a manual press to a pellet of 5 mm di-
ameter and each packed in a polyethylene ampoule, 
together with an Al-0.1% Au IRMM-530 disk 6 mm in 
diameter and 0.2 mm thickness and irradiated for short 
irradiations (2 - 5 min) in the pneumatic tube (PT) of 
the 250 kW TRIGA Mark II reactor of the J. Stefan 
Institute at a thermal neutron flux of 3.5·1012 cm–2·s–1, 
and for longer irradiations in the carousel facility (CF) 
at a thermal neutron flux of 1.1·1012 cm–2·s–1 (irradia-
tion time for each sample about 18 - 20 h). After irra-
diation, the sample and standard were transferred to 
clean 5 mL polyethylene mini scintillation vial for 
gamma ray measurement. 

To determine the ratio of the thermal to epithermal 
neutron flux (f) and the parameter  , which charac-  
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Figure 3. Lines of direct regression “Odessa-Antarctic sta-
tion” (a), line of inverse regression “Antarctic station- 
Odessa” (b), “Ljubljana–Antarctic station” (c), “Antarctic 
station- Ljubljana” (d). 

terizes the degree of deviation of the epithermal neu-
tron flux from the 1/E-law, the cadmium ratio method 
for multi monitor was used [13]. It was found that f = 
32.9 and   = –0.026 in the case of the РТ channel, 
and f = 28.7 and   = –0.015 for the CF channel. 
These values were used in calculation of the concen-
trations of short- and long-lived nuclides.  

 -activitiy of irradiated samples were measured on 
two HPGe-detectors (ORTEC, USA) of 20 and 40% 
measurement efficiency [13]. Experimental data ob-
tained on these detectors were fed into and processed 
on EG&G ORTEC Spectrum Master and Canberra 
S100 high-velocity multichannel analyzers, respec-
tively. To calculate net peak areas, HYPERMET-PC 
V5.0 software was used [14], whereas for evaluation of 
elemental concentrations in atmospheric aerosol parti-
cles, KAYZERO/SOLCOI software was used [15]. 
More details of the k0-instrumental neutron-activation 
analysis applied could be found in [13]. 
 
3.2. Comparative Analysis of Atmospheric PM 

Composition in Different Regions of the 
Earth 

 
The results of presenting the atmospheric PM concen-
tration values of Ljubljana  i

LjubljanaC  and Odessa 
 i

OdessaC  on a logarithmic scale relative to the similar 
data from Academician Vernadsky station  .

i
Ant stationC  

demonstrate with high reliability that the correlation 
coefficient r is approximately equal to unity both for 
the direct and reverse regression lines “Odessa-Ant-
arctic station”, “Ljubljana-Antarctic station” (Figure 
3): 

 1 2

12 21 1r b b                 (4) 

where b12 and b21 are the slopes of direct and reverse 
regression lines (see (1)) for corresponding pairs. 

Figures 4 and 5 show the regression lines for daily 
normalized average concentrations of crustal, anthro-
pogenic and marine elements (Table 1), measured on 
March 2002 in the regions of Odessa (Ukraine), the 
Ukrainian Antarctic station (64˚15'W; 65˚15'S) and 
Ljubljana (Slovenia) relative to the same data obtained 
in Nonotake [5] (Figure 4) and the South Pole [1] 
(Figure 5). 

The choice of the atmospheric aerosol concentration 
values of the South Pole as a baseline, relative to which 
a dependence of the type given by (1) was analyzed, 
was made for three reasons: 1) these data were ob-
tained by the same technique and method as in section 
3.1, and simultaneously expand the geographical com-
parison, 2) the element spectrum that characterizes the 
atmosphere of South Pole covers a wide range of ele-  
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Figure 4. Relationship between atmospheric PM elemental 
concentrations measured in theregions Odessa (Ukraine), 
Ljubljana (Slovenia), Vernadsky station (64˚15'W; 65˚15'S), 
SouthPole [1] and the same data measured in the region of 
Nonotake [5]. 

ments (see Table 1); and 3) the South Pole has the 
purest atmosphere on Earth, making it a convenient 
basis for comparative analysis. 

We present also the monthly normalized average 
concentrations of atmospheric PM measured over the 
period 2006-2007 in the region of the Ukrainian Ant-
arctic station “Academician Vernadsky” (Figures 6, 7). 

Comparative analysis of experimental sets of nor-
malized concentrations of atmospheric aerosol ele- 
ments measured in our experiments and independent 
experiments of the Japanese National Air Surveillance 
Network (NASN) shows a stable linear (on a logarith 
mic scale) dependence on different time scales (from 
average daily to annual). That points to a power law 
increase of every atmospheric PM element mass (vol-  

 

Figure 5. Relationship between atmospheric PM elemental 
concentrations measured in the regions Odessa (Ukraine), 
Ljubljana (Slovenia), Vernadsky station (64˚15'W; 65˚15'S), 
Nonotake [5] and the same data measured in the region of 
the South Pole [1]. 
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Table 1. Chemical element composition in atmospheric PM. 
Symbols CSP, CCB, CNonotake denote concentrations at the 
South Pole, continental background stations and Nono-
take-city, respectively. Measured concentrations in the vi-
cinity of the Ukrainian Antarctic Station, Odessa and 
Ljubljana are denoted by CAntarctica, COdessa and CLjubljana. 

СSP СCB 
CNono-

take 
САntarctica СОdessa CLjubljana

Element 
(ng/m3) 

S 49 - - - - - 
Si - - - - - - 
Cl 2.4 90 - - - 528.2
Al 0.82 1.2 × 103 237.4 - - 1152 
Ca 0.49 - 185.8 93 2230 1630 
Fe 0.62 1 × 102 157.6 53.4 1201 1532 
Mg 0.72 - - - - 1264 
K 0.68 - - 24.4 502.8 918 
Na 3.3 1.4 × 102 538.8 361.95 393.8 1046 
Pb - 10 23.2 - - - 
Zn 3.3 × 10–2 10 38.3 4.48 62.6 127.2
Ti 0.1 - 15.4 - - - 
F - - - - - - 
Br 2.6 4 - 1.34 14.81 9.62 
Cu 3 × 10–2 3 8.20 11050 4240 - 
Mn 1.2 × 10–2 3 6.61 - - 34.7 
Ni - 1 1.48 - - - 
Ba 1.6 × 10–2 - - - - 6.91 
V 1.3 × 10–3 1 2.44 - - 17.08
I 0.74 - - - - 36.24

Cr 4 × 10–2 0.8 1.14 3.11 45.2 - 
Sr 5.2 × 10–2 - - - - - 
As 3.1 × 10–2 1 2.74 - 1.83 4.18 
Rb 2 × 10–3 - - - - 0.92 
Sb 8 × 10–4 0.5 - 0.07 1.97 4.62 
Cd <1.5 × 10–2 0.4 - - - - 
Mo - - - 1.46 4.08 - 
Se <0.8 0.3 - 0.02 0.47 1.21 
Ce 4 × 10–3 - - - 4.22 2.72 
Hg 0.17 0.3 - 0.36 2.75 - 
W 1.5 × 10–3 - - 0.24 - - 
La 4.5 × 10–4 - - - 1.79 1.36 
Ga <1 × 10–3 - - - - - 
Co 5 × 10–4 0.1 - 0.02 0.89 0.29 
Ag <4 × 10–4 - - 2.74 1.42 - 
Cs 1 × 10–4 - - - 0.09 - 
Sc 1.6 × 10–4 5 × 10–2 0.04 3.36 × 10–3 0.21 0.298
Th 1.4 × 10–4 - - - 0.29 0.060
U - - - - 0.07 - 

Sm 9 × 10–5 - - 2.68 × 10–3 0.24 0.198
In 5 × 10–5 - - - - - 
Ta 7 × 10–5 - - - - - 
Hf 6 × 10–5 - - - - - 
Yb <0.05 - - - - - 
Eu 2 × 10–5 - - - - - 
Au 4 × 10–5 - - 1.07 × 10–3 0.006 - 
Lu 6.7 × 10–6 - - - - - 

 
ume) and simultaneously to the cause of this increase – 
the fractal nature of atmospheric PM genesis.  

In other words, stable fulfillment of the equality (4) 
not only for the experimental data shown in Figures 3- 
7, but also for any pairs of the NASN data [5] (see 
Figure 2) unambiguously indicates that, on the one 
hand, the model of linear regression is satisfactory and, 
on the other hand, any of the analyzed samples mi  

 
Figure 6. The regression lines for the normalized monthly 
average concentrations of atmospheric PM measured in the 
region of the Ukrainian Antarctic station “Academician 
Vernadsky” measured in August - December 2006 with 
respect to October 2006. 
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Figure 7. The regression lines for the normalized monthly 
average concentrations of atmospheric PM measured in the 
region of the Ukrainian Antarctic station “Academician 
Vernadsky” in January - March 2007 with respect to Octo-
ber 2006. 

which describe the sequence of i-th element partial 
concentrations in an aerosol, must to obey the Gauss 
distribution with respect to the random quantity ln pi. 
Proof of these assertions for multifractal objects is 
presented below. 

4. The Spectrum of Multifractal Dimensions 
and Log Normal Mass Distribution of 
Secondary Aerosol Elements 

A detailed analysis of Figures 1, 3-5, where the linear 

regressions for different pairs of experimental samples of 
element concentrations in atmospheric PM measured at 
various latitudes are shown, allows us to draw a definite 
conclusion about the multifractal nature of PM. The basis 
of such a conclusion is the reliably observed linear de-
pendence of (3) type between the normalized concentra-
tions Сi of the same element i in atmospheric PM in dif-
ferent regions of the Earth.  

Thus, it is necessary to consider the atmospheric PM, 
which is the multicomponent (with respect to elements) 
system, as a nonhomogeneous fractal object, i.e., as a 
multifractal. At the same time, the spectrum of fractal 
dimensions  f   and not a single dimension 0  
(which is equal to D0 for a homogeneous fractal) is nec-
essary for complete description of a nonhomogeneous 
fractal object. We will show below that the spectrum of 
fractal dimensions  f   of multifractal predetermines 
the log normal type of statistics or, in other words, the log 
normal type of mass distribution of multifractal i-th 
component. This is very important, because the represen-
tation of mass distribution of atmospheric PM as the log 
normal distribution is predicted within the framework of 
the self-preserving theory [20,21] and is confirmed by 
numerous experiments at the same time [3]. 

To explain the main idea of derivation we give the ba-
sic notions and definitions of the theory of multifractals. 
Let us consider a fractal object which occupies some 
bounded region £ of size L in Euclidian space of dimen-
sion d. At some stage of its construction let it represents 
the set of N >> 1 points distributed somehow in this re-
gion. We divide this region £ into cubic cells of side  
  << L and volume d . We will take into considera-
tion only the occupied cells, where at least one point is. 
Let i be the number of occupied cell i = 1, 2,···,  N  , 
where  N   is the total number of occupied cells, 
which depends on the cell size  . Then in the case of a 
regular (homogeneous) fractal, according to the definition 
of fractal dimensions D, the total number of occupied 
cells  N   at quite small ε looks like 

  D D
LN L    .                (5) 

where   is the cell size in L units, L  is the size of 
fractal object in ε units. 

When a fractal is nonhomogeneous a situation becomes 
more complex, because, as was noted above, a multifrac-
tal is characterized by the spectrum of fractal dimensions 
 f  , i.e. by the set of probabilities pi, which show the 

fractional population of cells   by which an initial set is 
covered. The less the cell size is, the less its population. 
For self-similarity sets the dependence pi on the cell size 
  is the power function 

   
1

i
i L

i

p L
N

i 
 


           (6) 
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where i  is a certain exponent which, generally speak-
ing, is different for the different cells i. It is obvious, that 
for a regular (homogeneous) fractal all the indexes i  in 
(6) are identical and equal to the fractal dimension D. 

We now pass on to probability distribution of the dif-
ferent values i  Let  n d   is the probability what 
αi is in the interval  ,  +d   . In other words, 
 n d   is the relative number of the cells i, which 

have the same measure pi as i  in the interval 
 ,  +d   . According to (5), this number is propor-
tional to the total number of cells   D

LN     for a 
monofractal, since all of i  are identical and equal to 
the fractal dimension D. 

However, this is not true for a multifractal. The differ-
ent values of i  occur with probability characterized by 
the different (depending on  ) values of the exponent 
 f  , and this probability inherently corresponds to a 

spectrum of fractal dimensions of the homogeneous sub-
sets £ of initial set £: 

   f
Ln    .                  (7) 

Thus, from here a term “multifractal” becomes clear. It 
can be understood as a hierarchical joining of the differ-
ent but homogeneous fractal subsets £ of initial set £, 
and each of these subsets has the own value of fractal 
dimension  f  . 

Now we show how the function  f   predetermines 
the log normal kind of mass (volume) distribution of the 
multifractal i-th component. To ease further description 
we represent expression (8) in the following equivalent 
form: 

   exp lnn f L    .            (8) 

It is not hard to show [19] that the single-mode func-
tion  f   can be approximated by a parabola near its 
maximum at the value 0 . 

   2

0f D       0              (9) 

where the curvature of parabola 

0

0 0 0

( ) 1

2 2 2( ) q

f

D D




 


 

   
       (10) 

is determined by the second derivative of function  f   
at a point 0 . Due to a convexity of the function  f   
it is obvious, that the magnitude in square brackets must 
be always positive. The fact, that the last summand 0qD   
in these brackets is numerically small and it can be ne-
glected, will be grounded below. 

At the large L  the distribution  n   (8) with an 
allowance for (9) takes on the form 

 2

0
0

0 0

ln
( ) ~ exp ln

4( )

L
n D L

D




 




 
 

  
.    (11) 

Then, taking into account (5), we obtain from (11) the 
distribution function of random variable pi 

 

   

0

0

2

0

0

exp

~ ln

1
ln ln

4 ln 1

Di

i

D

Nn p

p p
p N




 
  
  

      (12) 

which with consideration of normalization takes on the 
final form  

 

 

2

2

2

1 1
exp

22

1
           exp ln

2

i

i

P p

p

 





      
     

       (13) 

where 

0

2
0

0

ln
1

1n  , =2
N

p
p

              (14) 

This is the so-called log normal (relative) mass pi dis-
tribution. It is possible to present the first moments of 
such a kind of distribution for random variable pi in the 
following form: 

  0 0

0

2 32 2 3
0

3
exp 1

2
D

D sp p N         
L     (15) 

       
    0 0 0 0

2 2

2 2 3 2 2

var exp 2 exp 4 exp 3

1D D

p

L L 
 

  

 

    

 
   (16) 

At the same time, it is easy to show that the distribu-
tion (13) for the random variable ln pi has the classical 
Gaussian form 

 

 

2

2

2

1
1n 

2

1
exp 1n 1n 

2

P p

p p







      

          (17) 

where the first moments of this distribution for the ran-
dom variable ln pi look like 

   2
0 01n 2 1np D  L           (18) 

   2
0 0var 1n 2 1np a D  L         (19) 

Thus, according to the known theorem of multidimen-
sional normal distribution shape [22], a normal law of 
plane distribution for the two-dimensional random vari-
able (p1i, p2i) will be written down as 

 

   

1 2 2
1 2

2 2

2

1
1n ,1n 

2 1

1
exp 2

2 1

i ip p p
r

u v ruv
r

 
 



 
    
  

       (20) 
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where 

1 1 2 2

1 2

1n 1n 1n 1n 
,       (21) i i i ip p p p
v

 
 

 

= cov(ln p1i, ln p2i)/σ1 σ2 is the correlation coefficient 
between ln p1i and ln p2i. 

, by virtue of well-known linear correlation theo-
rem [6,22] it is easy to show that ln p1i and ln p2i are con-
nected by the linear correlation dependen
two-dimensional random variable (ln p1i, ln p2i) is nor-
m

r

Then

ce, if the 

ally distributed. This means that the parameters of 
two-dimensional normal distribution of the random val-
ues p1i and p2i for the i-th component in one aerosol parti-
cle, which are measured in different regions of the Earth 
(the indexes 1 and 2), are connected by the equations of 
direct linear regression: 

1
1 1 2 2

2

1n 1n 1n 1n i
i i i i

i

p p r p p



         (21) 

and inverse linear regression 

2
2 21n 1n i

i ip p


1 1
1

1n 1n i i
i

r p p


         (22) 

where I = 1,···,Np is the component number. 
Taking into consideration that we measure experimen-

i of the i-th component in 
the unit volume of atmosphere, the partial concentration 
mi of the i-th component in one aerosol particle 
in different regions of the Earth (the indexes 1 and 2) 

tally the total concentration С

measured 

looks lik 

1 1 1 1 2 2 ,  i i i im C n m C n          (23) 

where n1 and n2 are the number of inoculating centers, 
whose role play the primary aerosols (Dp < 1 μm). 

Here it is necessary to make important digression con-
cerning the choice of quantitative measure for description 
of fractal structures. According to Feder [18]
tion of appropriate probabilities correspo

ure of 
pr

, determina-
nding to the 

chosen measure is the main difficulty. In other words, if 
choice of measure determines the search proced

obabilities pi, which describe the increment of the 
chosen measure for given level of resolution  , then the 
probabilities themselves predetermine, in its turn, the 
proper method of their measurement. So, general strategy 
of quantitative description of fractal objects, in general 
case, should contain the following direct or reverse pro-
cedure: the choice of measure—the set of appropriate 
probabilities—the measuring method of these probabili-
ties. 

We choose the reverse procedure. So long as in the 
present work the averaged masses of elemental compo-
nents of atmospheric PM-multifractal are measured, the 
geometrical probabilities, which can be constructed by 

experimental data for some fixed  , have the practically 
unambiguous form:  

  / /

/ /
i i i

i
i i i i

i i

mi C
p const

m C

 


 
  

 
     (24) 

where ρi is the specific gravity of the i-th component of 
secondary aerosol. 

Since the random nature of atmospheric PM formation 
is a priori determined by the random process
component diffusion-limited aggregation (DLA), 
the so-called harmonic measure [18] to describe quantita-

volution of possible growth of cluster 
PM

ster. Both these magnitudes, Np and N, 
ch

 of multi-
we used 

tively a stochastic surface inhomogeneity or, more pre-
cisely, to study an e

 diameter.  
In practice, a harmonic measure is estimated in the fol-

lowing way. Because the perimeter of clusters, which 
form due to DLA, is proportional to their mass, the num-
ber of knots Np on the perimeter, i.e., the number of pos-
sible growing-points, is proportional to the number of 
cells N in a clu

ange according to the power law (5) depending on the 
cluster diameter L. From here it follows that all the knots 
Np, which belong to the perimeter of such clusters, have a 
nonzero probability what a randomly wandering particle 
will turn out in them, i.e., they are the carriers of har-
monic measure  ,  d LM q   

 

 

1
,

0, ( )
,

, ( )

p
dN

q
d L i

i

d
L L

L

M q p
L

d q
Z q

d q




 







    
 


    

          (26) 

where  ,  Z q L  
al q

is the generalized statistical sum in the 
interv     ,  q  is the index of mass, at 
which a m ure does not become zeeas

 
ro or infinity at 

L    .  
at in

 0L 
 obvious, thIt is  such a form the harmonic measure 

is described by the full index sequence , which de-

epending on . At t

lated in the usual way, but using th ian parti-
cl

 q

e “Brown

termines according to what power law the probabilities pi 
change d  L he same time, the spectrum 
of fractal dimensions for the harmonic measure is calcu-

 
es-probes” of fixed diameter   for study of possible 

growth of the cluster diameter L. From (26) i ows that 
in this case the generalized statistical sum  ,  

t foll

LZ q   can 
be represented in the form. 

   
1

,  ~
pN

qq
L i L

i
Z q p   


             (25) 

As is known from numerical simulation of a harmonic 
measure, when the DLA cluster surface is y the 
large number of randomly wandering particles, th eaks 
of “high” asperities in su

probed b
e p

ch a fractal aggregate have 
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greater possibilities than the peaks of “lo
if possible growing-points on the perime
m

w” asperities. So, 
ter of our aerosol 

ultifractal to renumber by the index 1, , Pi N   the 
set of probabilities 

  1

pN

i i
p


                     (26) 

composed of the probabilities of (25) type will emulate 
the possible set of interaction cross-sections between 
Brownian particle and atmospheric PM-m  sur-
face, which consist

ultifractal
s of the Np groups of identical atoms 

distributed on the surface. Each of these groups charac-
terizes the i-th elemental component in the one atmos-
pheric PM. 

A situation is intensified by the fact that by virtue of 
(17) each of the independent components obeys the Gauss 
distribution, as is known [22], belong to the class of infi-
nitely divisible distributions or, more specifically, to the 
class of so-called α-stable distributions. This means that 
although the Gauss distribution has different parameters 
(the average 1n i ip     and variance 2

i
 = var(ln pi) 

for each of components, the final distribution is the Gauss 
distribution too, but with the parameters ln p    

i  и 2 2
i   . From here it follows that the pa-

rameters of the two-dimensional normal distribution of all 
corresponding components in the plane p1, p2 are con-
nected by the equations of direct linear regression: 

1
1 1 2

2

1n 1n 1n 1n p p r p p



         (27) 

and inverse linear regression: 

2 

2
2 2 1 1

1

1n 1n 1n 1n p p r p p



          (28) 

So, validity of the assumption (28) for the s
aerosol or, that is the same, validity of the application of 

uantitative description of 
mul-

taneous consideration of (28) and equation of dir
regression (29) will result in an equation identical to the 
eq

econdary 

harmonic measure for the q
aerosol stochastic fractal surface, will be proven if si

ect linear 

uation of direct linear regression (3). 
Therefore, taking into account (28) we write down, for 

example, the equation of direct linear regression or, in 
other words, the condition of linear correlation between 
the samples of i-th component concentrations 

  1ln /
iiC   and   2ln /

iiC   in an atmospheric 
aerosol measured in different places (indexes 1 and 2): 
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



 


  
 





  (31)  


It is obvious, that this equation completely coincides 
with the equation of linear regression (3), but is theoreti-
cally obtained on basis of the Gauss distribution of the 
random magnitude ln pi and not in an empirical wa

Physical interpretation of the intersept a12 is evident 
from the expression (29), whereas meaning of the regres-
sion coefficient b12 becomes clear, according to (19) and 
(2

y. 

9), from the following expression: 
1 2 1 2

1 1 1
12

2 2 2

var(ln ) ln( )

var(ln ) ln( )

p L
b r r

p L




   
    

   
    (29) 

where L1 and L2 are the average sizes of separate atmos-
pheric PM-multifractals typical for the atmosphere of 
investigated regions (indexes 1 and 2) of the Earth, 1  
and 2  are the cell sizes into which the correspond
atm c PM-multifractals are divided.  

Below we give a computational procedure 
for identification of the generalized fractal dimension Dq 

ing 
ospheri

algorithm 

spectra and function  f  . It is obvious, that such a 
problem can be solved by the following redundant system 
of nonlinear equations of (15), (16), (18) and (19) type: 

 
   0 0 0 0 )

var( ) 1p L L  
0 0

2(2 3 ) 2(2

(2 3 ) ln
D D

p D L
 

 
 

 ln

  
.   (30) 

 
 

2
0 0

2
0 0

ln 2 ) ln

var(ln ) 2( ) ln

p D L

p D L

(   

  

   

  
,     (31) 

where   is the cubic cell fixed size, into which the 
bounded region £ of size L in Euclidian space of dimen-
sion d is divided. 

To solve the system of Equations (33) and (34) with 
respect to the variables 0, D0 and  , L  

lly the 
it is necessary 

and sufficient to measure experim i
nents of the concentration sample Сi in the unit volume 

s

l  

n

enta -th compo-

of atmo pheric air (see section 3) and size distribution of 
atmospheric PM for determination of the average size L. 

It will be recal ed that from the physical standpoint
so-called the box counting dimension D0, the entropy 
dimension D1 and the correlation dime sion D2 are the 
most interesting in the spectrum of the generalized fractal 
dimensions Dq corresponding to different multifractal 
inhomogeneities. Within the framework of the notions 
and definitions of multifractal theory mentioned above we 
decribe below the simple procedure for finding of spec-
trum of the generalized fractal dimensions Dq taking into 
account the solution of the system of Equations (33) and 
(34). 

From (27) it follows that in our case a multifractal is 
characterized by the nonlinear function  q  of mo-
ments q 

0

ln ( ,  )
( ) lim

lnL

L

L

Z q
q







 .           (32) 
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ies some bounded region £ of “running” size L (so 
th

As well as before we consider a fractal object, wich 
occup

at 0L  ) in Euclidian space of dimension d. Then 
spectrum of the generalized fractal dimens Dq char-
acterizing

ions 
 the multifractal statistical inhomogeneity (the 

distribution of points in the region £) is det
relation 

ermined by the 

( )

1q

q
D

q





,                 (33) 

where (q – 1) is the numerical factor, which normalizes 
the function  q  so that the equality Dq = d is fulfilled 
for a set of constant density in the d-dimensional Euclid-
ian space.  

Further, we are interested in the known in theory of 
multifractal connection between the mass index  q  

 and the multifractal function f   by which the spec-
trum of generalized fractal dim D  is determensions q ined 

 ) 1
( ) ( ( ))

1 1qD q a q f a q
q q


   

 
.      (34) 

It is obvious, t

(q

hat in our case, when the sample pi is 
experimentally determined and the cell size    L is 
numerically evaluated (by the system of Equations (33) 
and (34)), the spectrum of generalized fractal dimensions 
Dq (36) can be obtained by the expression for the mass 
index  (35):  q

1

ln
( )

1 ( 1) ln

i
i

q

pN
q

L

p
q

D
q q




 
 


.          (35) 

Finally, joint using of the Legendre transformation 

d

dq

  ,                 (36) 

( )
d

f q
dq

   ,              (37) 

which sets direct algorithm for transition from the vari-
ables   ,  q q  to the variables   ,  f  , and 

oximate analytical expression (38) for the funct
the 

appr ion 
Dq m ble to determi
multi on 

akes it possi
fractal functi

ne an expression for the 
 f  . 

ider thNo ons e sp  of the 
box counting dimension D0 and the 
One of goals of this consideration is the validation of as-

10), w he de

sform n sets, which sets transi-
tio

w we will c ecial case of search
entropy dimension D1. 

sumption of smallness of the magnitude   in the ex-
pression ( hich was used for t ion of log 
normal distribution of the random magnitude pi (13). 

It is easy to show that combined using of (9) and the 
inverse Legendre tran atio

0q
D



rivat

n from the variables   ,  f   to the variables 
  ,  q q , gives the following dependence of  q  

on the moments q: 

0 0 0( ) 2 ( )q q D     .         (38) 

Substituting (41) and (9) into (37), we obtain the ap-
proximate expression for the spectrum of generalized 
fractal dimensions Dq (q = 0.1) depending on 0  and 
D0: 

21
( )qD q D q D

q
 0 0 0 01

       (39) 

Thus, we cam write down the expressi
co


.   

ons for the box 
unting dimension D0 and the entropy dimension D1 

depending on 0  and D0 

D D ,             (40)   0 0

1 0
1

( ) ( ( ))
lim 2

1q

q a q f a q
D D

q 0 


 
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
 .    (41) 

Here it is necessary to make a few remarks. It will be 
recalled that  1qf    = D1 is the value of fractal di-
mension of that subset of the region £, which makes a 
most contribu e stattion to th

 virtue of 
 is equal t

l size 

istical su
However, by normalizing
cal sum (36) o unity at q = 1 and does not de-
pend on the cel

m (36) at q = 1. 
 condition the statisti-

 , on which the region £ i
Thus, this mo ion also is of order unity. There-
fo

s divided. 
st contribut

ation p
re, in this case (and only in this case!) the probabilities 

of cell occup
i L

  (6) are inversely propor-
tional to the total number of cells  ( ) f

L
n    , i.e., the 

condition  f    is fulfilled. 
So, the parameters of system of the Equations (33)and 

(34) obtained by the expression (9) can not in essence 
contain information a ut the generalized fractal dimen-
sions Dq for absolute value of the moments q greater than 
unity (i.e., q  1). 

Secondly, it is easy  that the expression (39) for 
the entropy dimension D1 does no  concrete 
type of th  

bo

 to show
t depend on

e function  f  , but is determined by its 
properties, for example, by symmetry  f   , 
  1f    and convexity   0f   . The geometrical 

method for determination of the entropy dimension D1 
shown in Figure 8 is simultaneously the geometrical 
proof of assertion (44).  

Thirdly, the expressions for the entropy dimension D1 
obtained by parabolic approximation of the function 
 f   and geometrical od (Figure 8) are equivalent. 

This means that the magnitude 
0

D  in the expression 
al to zero. Thus, ption of smallness 

of the magnitude 
0q

D

 meth

u our
q

 assum(10) is eq


  in the expression (10) is mathe-

matically valid. 
In the end, we note that the knowledge of generalized 

fractal dimensions Dq, the correlation dimension D2 and 

1 0 02D D    
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Figure 8. Geometrical method for determination of the en-
tropy dimension D1, which leads to the obvious equality. 

especially D1, which describes an information loss rate 
during multifractal dynamic evolution, plays the key role 
for an understanding of the mechanism of secondary 
aerosol formation, since makes it possible to simulate a 
scaling structure of an atmospheric PM with well-defined

ay 
that the magnitude D  gives an information necessary for 

asured i

cales (from average daily 
ints to a power law increase of every 
ment mass (volume) and simultane-

usly to the cause of this increase - the fractal nature of 

 

-multifractal elemental 
co

fractal structure is realized, and how their fractal 
di

 
typical scales. Returning to the initial problem of distribu-
tion of points over the fractal set £, it is possible to s

1

determination of point location in some cell, while the 
correlation dimension D2 determines the probability what 
a distance between the two randomly chosen points is less 
than L. In other words, when the relative cell size tends 
to zero  0L  , these magnitudes are anticorrelated, 
i.e. the entropy D1 decreases, while the multifractal cor-
relation function D2 increases. 
 
5. Conclusions 
 
Comparative analysis of different pairs of experimental 
normalized concentration values of atmospheric PM ele-
ments me n different regions of the Earth shows a 
stable linear (on a logarithmic scale) correlation ( r  = 1) 
dependence on different time s
to annual). That po
atmospheric PM ele
o
the genesis of atmospheric PM.  

Within the framework of multifractal geometry it is 
shown that the mass (volume) distribution of the atmos-
pheric PM elemental components is a log normal distri-
bution, which on the logarithmic scale with respect to the 
random variable (elemental component mass) is identical 
to the normal distribution. This means that the parameters 

of the two-dimensional normal distribution with respect 
to corresponding atmospheric PM

mponents, which are measured in different regions, are 
a priory connected by equations of direct and inverse lin-
ear regression, and the experimental manifestation of this 
fact is the linear (on a logarithmic scale) correlation be-
tween the concentrations of the same elemental compo-
nents in different sets of experimental atmospheric PM 
data. 

We would like to note here that a degree of our under-
standing of the mechanism of atmospheric PM formation, 
which due to aggregation on inoculating centres (primary 
aerosols (Dp  1m)) show a scaling structure with 
well-defined typical scales, can be described by the 
known phrase: “…we do not know till now why clusters 
become fractals, however we begin to understand how 
their 

mension is related to the physical process” [23]. This 
made it possible to show that the spectrum of fractal di-
mensions of multifractal, which is a multicomponent (by 
elements) aerosol, always predetermines the log normal 
type of statistics or, in other words, the log normal type of 
mass (volume) distribution of the i-th component of at-
mospheric PM.  

It is theoretically shown, how solving the system of 
nonlinear equations composed of the first moments (the 
average and variance) of a log normal and normal distri-
butions, it is possible to determine the multifractal func-
tion  f   and spectrum of fractal dimensions Dq for 
separate averaged atmospheric PM, which are the global 
characteristics of genesis of atmospheric PM and does not 
depend on the local place of registration (measurement). 

 
in

We should note here that the results of this work allow 
an approach to formulation of the very important problem 
of aerosol dynamics and its implications for global aero-
sol climatology, which is connected with the global at-
mospheric circulation and the life cycle of troposphere 
aerosols [3,21]. It is known that absorption by the Earth's 
solar short-wave radiation at the given point is not com-
pensated by outgoing long-wave radiation, although the

tegral heat balance is constant. This constant is sup-
ported by transfer of excess tropical heat energy to 
high-latitude regions by the aid of natural oceanic and 
atmospheric transport, which provides the stable heat 
regime of the Earth. It is evident that using data about 
elemental and dispersed atmospheric PM composition in 
different regions of the Earth which are “broader-based” 
than today, one can create the map of latitude atmospheric 
PM mass and size distribution. This would allow an 
analysis of the interconnection between processes of 
ocean-atmosphere circulation and atmospheric PM gene-
sis through the surprising ability of atmospheric PM for 
long range transfer, in spite of its short “lifetime” (about 
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s for the plan
an

10 days) in the troposphere. If also to take into considera-
tion the evident possibility of determination of latitude 
inoculating centers (i.e., primary aerosol) distribution, this 
can lead to a deeper understanding of the details of aero-
sol formation and evolution, since the natural heat and 
dynamic oscillations of the global ocean and atmosphere 
are quite significant and should impact influence primary 
aerosol formation dynamics and fractal genesis of secon-
dary atmospheric aerosol, respectively. 

It is important to note also that continuous monitoring 
of the main characteristics of South Pole aerosols as a 
standard of relatively pure air, and the aerosols of large 
cities, which are powerful sources of anthropogenic pol-
lution, allows determining the change of chemical and 
dispersed compositions of aerosol pollution. Such data 
are necessary for a scientifically-founded health evalua-
tion of environmental quality, as well a ning 

d development of an air pollution decrease strategy in 
cities. 
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