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Abstract 
 
Many electron calculations on a simplest realistic two electron system i.e. 2 molecule was applied and as 
the consequence correlation effects was reflected accurately in the wavefunctions of H2. Zanardi’s entangle-
ment measurement, demonstrated that the maximum of entanglement for the ground state happens when U = J 
and this resolved the controversial conclusion of U = 0 for maximum entanglement. It was shown that the 
ground and third excited states are maximally entangled. These maximally entangled states and also the 
minimally entangled states are correlated to their spin’s property. The wavefunctions of the not magnetic (S 
= 0) ground and excited states explicitly depend on correlation parameters whereas the first excited states 
which is magnetic (S2 = 2 and Sz 0) is not entangled. The second excited state is not magnetic but its 
wavefunction does not depend on correlation parameters therefore it is a moderately entangled state. In any 
case, by switching on a magnetic field an entangled state with Sz = 0 can be extracted from a not entangled 
degenerate magnetic state. We suggest that in a realistic molecular scale system, there is two criteria for 
finding maximally entangled electronic states, first the system should be in moderately correlated regime and 
second the system should have a non-magnetic (Sz = 0) electronic state. 

H



 
Keywords: Hubbard Model, Entanglement, Hydrogen Molecule 

1. Introduction 
 
Since Einstein, Podolsky and Rosen [1] and Schrödinger 
[2] investigated the non-classical properties of quantum 
systems and entered new concept as entanglement in to 
quantum physics, it had become strange property in in-
teraction between particles. Recent study of the entan-
glement and achievement in this respect has become a 
useful resource for quantum communications and infor-
mation processing [3] such as quantum teleportation 
[4,5], super dense coding [6], quantum key distribution 
[7], and quantum cryptography [8]. Entanglement also 
has been suggested as a quantitative measure for elec-
tron-electron (e-e) correlation in many body systems 
[9,10]. As a simple illustration of entanglement one can 
say that, if there is no way to write the states of two par-
ticles as a product of the states of two sub systems in the 
Hilbert space, then there will be an entangled system 
[11]. A lot of investigation has been done about measur-
ing entanglement, such as the Wooters’ measure [12] and 

the Schliemann’s measure [13,14]. Through Gittings’ 
investigation [15], it is shown that all these entanglement 
measures are not suitable but the Zanardi’s measure 
[16,17] satisfies all desirable properties of entanglement 
measurement for fermionic systems. 

H2 molecule is the simplest two electron systems that 
can be used to implement a many body calculation based 
on Hubbard model [18]. Traditional Hubbard model 
which is a priory many-body approach usually is used as 
a first attempt to calculate entanglement. This model 
gives maximum entanglement by setting e-e interaction 
parameter U = 0, which is a controversial conclusion 
[17,19,20]. To overcome this controversial conclusion a 
new calculation i.e. going beyond Hubbard model for 
obtaining entanglement of the non-magnetic ground and 
magnetic excited states of H2 molecule was done. The H2 
molecule is one of the simplest realistic two electrons 
correlated systems in nature which our model can be 
implemented with considering all direct and exchange 
interaction terms beyond Hubbard model. This imple-
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mentation lets us consider correlation effects more accu-
rately in the wavefunctions. Zanardi’s measurement was 
employed for calculating entanglement. To find the ef-
fect of the spin on the entanglement of states; the ground 
and excited state of 2H  was investigated and surpris-
ingly the results give maximally entangled states with 
non-zero U value. We also discuss the difference be-
tween maximally, moderately and zero entangled states 
based on their spin and correlation. 
 
2. Calculation Method 
 
The complete Hubbard Hamiltonian is defined as [21]: 

† † †1

2ij i j ijlm i j m l
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where ij  is hopping and on-site for electrons under the 
influence of both hydrogen nuclei and ijlm  is all elec-
tron-electron interactions. The first term contains non- 
interacting part of Hamiltonian which can be written as: 
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where 0  is the energy of atomic orbital, †
ic  and ic are 

fermionic creation and annihilation operators respec-
tively on site i with spin , and t stands for the hopping 
integral between two H atomic sites of the electrons with 
the same. The second term of Hamiltonian that contains 
e-e interaction part can be written as: 
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where Vijlm stands for all  Coulomb interaction pa-
rameters between electrons, which is U as on-site Cou-
lomb repulsion or V1111 and V2222, J as inter-site Coulomb 
repulsion or V1212 and V2121 and  

42

†
i i in c c   is density 

operator. The last terms X1 and X2 are the exchange in-
teractions parameters that can only be interpreted by 
quantum mechanics and are demonstrated as: 

1 1112 1121 1211
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We consider two electrons of 1s orbital of two H atoms 

of H2 molecule with both spin orientations up and down, 
therefore we have four states for a single electron and as 
the result for their combination there are C(4,2)=6 states 

which are represented with notation 
1 1 2 2

n n n n     as : 

1 2 3

4 5 6
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     (6) 

With these sets of states, the Hamiltonian parameters 
were calculated and Hamiltonian matrix is: 
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All the diagonal elements contain a term tii, where it is 
twice 0 and this one is roughly two times of the energy 
of an electron in the 1s state of atomic hydrogen i.e. 

0 24.6eV   and are not written here. Using ab initio 
energies for H2 and the values of 0 and t from [22] the 
Hamiltonian parameters, U, J, X1 and X2, were evaluated 
and are given in Table 1. 

Entanglement measurement is defined by von Neu-
mann’s entropy as [16]: 

   2logA AS tr A               (8) 

where A is the label of one of the subsystems which in 
our model is 1s orbital of one of the Hydrogen atoms and 

A  is reduced density matrix defined as: 

0 ( )A B B B
j

tr j j             (9) 

Where Btr stands for tracing over all sites except the B 
sites and 

B
j  is eigenstates for B subsystem 

 2 2  i.e. n n 00 , 10, 01  and 11 . After this calcu-
lation, the reduced density matrix for the ground state 
(not normalized) becomes: 

2
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For other states, reduced density matrices have been 
evaluated accordingly and their entanglements were cal-
culated. The resultant entanglement values are listed in 
Table 2. By action of S2 operator on the 0 3E E  
eigenstates, one could find total spin of each state in 
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Table 1. The calculated values of Hamiltonian parameters. 

Hamiltonian parameter 0  t U J 1X  2X  

Calculated value (eV) −24.6 6.5 11.8 9.9 0.8 1.4 

 
Table 2. The parametric energies of hydrogen molecule are listed in the first column of the Table, where 

2( ) 1x x x    and 1( ) 4( )x U J t X   . The values of energies from [22] are listed in the second column, eigenfunction 
for these states are also listed in the third column. The S2 and Sz of each state are given in the next columns and the last col-
umn is the calculated entanglement ( )AS  for these states, based on Zanardi’s measurement. 

E E(eV)   2S zS  ( )AS   

0 0 2 12 2( )E J X t X      ( )x −51.60 1 6 4 3( )( )x       0 0 2  

1 02E J   2X  −40.58 3 4   2 0 1 

1 02E J   2X  −40.58 2  2 1 0 

1 02E J   2X  −40.58 5  2 -1 0 

2 02E U   2X  −38.80 6 1   0 0 1 

3 0 2 12 2( )E J X t X      ( )x −22.32
1 6 4 3( )( )x      

0 0 2  

 
which 0 2,E E  and 3E  have S2 = 0, but 1E has 
S2 = 2. Some of the eigenvalues and eigenstates of hy-
drogen molecule are dependent to parameters of Hamil-
tonian via , where   21x x    x  and  
x     14U J t X . All eigenvalues and S2, eigen-
states (not normalized) and also their related Sz are 
summarized in Table 2. 
 
3. Results and Discussion 
 
Based on the results summarized in Table 2 the wave-
function of the ground and third excited state are de-
pendent upon e-e correlation parameters via 

  21x x x    with    14x U J t X   . Both of 
these states are nonmagnetic (S = 0). The wavefunctions 
of the first and second excited states are explicitly inde-
pendent from Hamiltonian parameters. There is no de-
pendency of any wavefunction to exchange interaction 
X2. Using parameters of Table 1 and von Neumann’s 
entropy given by Equation (6) an entanglement value of 

 was obtained for ground and third excited 
states. The maximum available value of entanglement is 

2 for a system with the Hilbert space dimension of 
the smaller subsystem as d [23]. Accordingly, for H2 
molecule the maximum available entanglement is 2 and 
much closed values were obtained for these states. The 
results of maximally entangled ground and third excited 
states can be explained by the corresponding wave func-
tions of these states. The wavefunctions of the ground 
and third excited states are superposition of four body 
basis of the systems i.e. 1 3

  2S  

log d

4, ,   and 6 with equal co-
efficients since the value of  x become 1 by consid-
ering the values of Table 1, therefore is maximum mix-

ing and hence maximum entanglement. From Table 2, 
one can realize that the first excited state 1E  is a spin 
triplet state with S = 1 and its wavefunction is independ-
ent from correlation parameters. The value of entangle-
ment for the Sz = 0 eigenfunction is 1 while its value for 
the eigenfunction with Sz = ±1 is zero. The difference 
between entanglements of the degenerate wavefunctions 
with different Sz can be explained by their related wave-
functions. The 1, 0zE S  state is a linear combination 
of 3  and 4 whereas the 1, 1zE S    state are sepa-
rable ( 2 or 5 ). The importance of the nonzero spin of 
the first excited state is that this kind of state can be de-
tected by Electron Paramagnetic Resonance (EPR) under 
some condition [24]. When the magnetic field is absent 
the wavefunction is a superposition of the degenerate 
wavefunctions with different Sz values. The calculated 
entanglement of this degenerate state is zero. However, 
after switching on the magnetic field, a wavefunction 
with distinct value of entanglement emerges. According 
to Table 2 the values of the Sz and entanglement for this 
state are 0 and 1 respectively. This might be a way for 
switching to a pure entangled state. 

The second excited state 2E  is nonmagnetic, S=0, 
where the wavefunction is independent from correlation 
parameters. The calculated entanglement is 1. The 
wavefunction of this state is only a linear combination of 
two basis set 6  and 1 , hence its entanglement is 
smaller than ground and third excited states. By compar-
ing the values of the entanglement listed in Table 2, one 
can conclude that the nonmagnetic states (S = 0) in 
which the wavefunction depend on interaction parame-
ters are maximally entangled and the magnetic states 
whose wavefunctions are independent from correlation 
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

parameters are not entangled at all. Using von Neu-
mann’s entropy given by Equation (6), the variation of 
entanglement for the ground state of H2 molecule with 
respect to the combination of correlation parameters 

   14x U J t X    were calculated and is plotted in 
figure 1. It is clear from this figure that the value of en-
tanglement is maximum for x = 0 (U = J). This conclu-
sion resolves the unphysical gesture previously reported 
by other groups [17,19,20] who obtained maximally en-
tangled ground state with U = 0. The U = 0 result imply 
that the maximally entangled ground state is not attain-
able for the H2 molecule since the ab initio value of U is 
11.8 (Table 1), which is very far from zero. But the con-
clusion of our model indicates that the maximally entan-
gled ground state is for U = J. This has a meaningful 
physical interpretation which states that in such physical 
system where the inter-atomic distance is very small, the 
on-site Columbic repulsion U can be very close to the 
inter-site Columbic repulsion J. Indeed the H2 molecule 
is the best example of such systems when the in-
ter-atomic distance is minimum or d = 0.7A, the ab initio 
value of U and J from Table 2 gives x = 0.06. Also by 
using Hubbard parameters of Table 1, we obtained x = 
0.06 and this value of x gives maximally entangled 
ground state. The maximum entanglement value for x = 
0.06 is 1.99. As is observable in Figure 1, for the ex-
treme limit or U much greater than t, i.e. strongly corre-
lated systems the entanglement becomes smaller and 
tends to 1. The non-magnetic property of this state sets a 
limit on minimum available entanglement for this state. 
This point can be explained by using eigenfunction listed 
in Table 2. For x  much greater than 1, one of the  
or   goes to zero and the other one becomes very 
large. In both cases the ground state wavefunctions listed 
in Table 2 reduce from extension over the four compo-
nents to an extension over two components similar to 

2E  state. Therefore the corresponding value of entan-
glement reduces from 2 to 1. This also can be explained 
by tendency of the strongly correlated systems with U 
much greater than t to unpaired electronic configuration 
in atomic orbital such as 2 and 5  states. Such states 
tend to have parallel spin and as the result the entangle-
ment reduces. In the case of H2 where the values of t, U 
and J are the same order of magnitude (See Table 1) and 
as the consequence x is much close to zero the molecule 
is in moderately correlated regime and one can obtain the 
maximum available entanglement as it is apparent in 
Figure 1. In this scheme both spatial and spin have to be 
considered for correlated wavefunction [17]. Neglecting 
exchange interaction in our model (X1 = X2 = 0), results to 
considerable change in energy levels of the system (see  
Table 2). However, the dependence of the ground and 
third excited state wavefunctions on the exchange pa- 

 
Figure 1. Entanglement for the ground state of Hydrogen 
molecule versus e-e interaction arameters. 
 
rameters is only to X1 and putting X1 = 0 yields x = 0.07 
and as the result the maximum entanglement becomes 
1.99 which is the same as the case of nonzero X1 (x = 
0.06). Hence in order to have maximally entangled states, 
the most effective parameters are direct Columbic inter-
action parameters U and J and exchange interaction pa-
rameters do not alter the value of entanglement signifi-
cantly. 
 
4. Conclusions 
 
A many electron calculation on a simplest realistic two 
electron system i.e. H2 molecule was applied. Going be-
yond traditional Hubbard model lets to account correla-
tion effects accurately in the many electron wavefunction 
of the ground and excited states. Using ab initio e-e in-
teraction parameters gives a moderately correlated re-
gime for the molecule and consequences maximally en-
tangled ground and third excited state. The wavefunc-
tions of the not magnetic (S = 0) ground and third excited 
states explicitly depend on correlation parameters 
whereas the first excited states which is magnetic (S2 = 2 
and Sz   0) is not entangled. The second excited state 
is not magnetic but its wavefunction does not depend on 
correlation parameters therefore it is a moderately entan-
gled state. In any case, by switching on a magnetic field 
an entangled state with Sz = 0 can be extracted from a not 
entangled degenerate magnetic state. We suggest that in 
a realistic molecular scale system, there is two criteria 
for finding maximally entangled electronic states, first 
the system should be in moderately correlated regime 
and second the system should have a non-magnetic (Sz = 
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0) electronic state. 
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