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ABSTRACT 

In this paper we model in a new way the nuclei of 
deuterium and tritium. We consider the nucle- 
ons as toroids that rotate at a constant angular 
velocity around a line perpendicular to their ro- 
tation plane and passing through the center of 
mass of the nuclei. Based on exact analytical 
formulas obtained by us for the electrostatic in- 
teraction between two spheres with arbitrary ra- 
dii and charges, we obtain that the known bind- 
ing energy of the deuteron and triton has an elec- 
tromagnetic nature. We also obtain through the- 
se formulas the force of interaction inside these 
nuclei. Besides that, within the framework of the 
classical model we use, we calculate the volumes 
and mass densities of the nucleons. Throughout 
all that we use the experimentally obtained re- 
sults for the radii and masses of the nucleons and 
nuclei under study. Through our toroid model we 
confirm the main experimental results obtained 
for the deuteron and triton not only for the bind- 
ing energy but also for the magnetic moments, 
spins and stability. 
 
Keywords: Deuteron; Triton; Strong Interactions; 
Binding Energy; Electrostatic Interactions 

1. INTRODUCTION 

In order for a complete theory of the atomic nucleus to 
be created, that theory has to be able to explain the struc- 
ture of the nucleus and the available experimental data 
about its behavior [1-4]. The main difficulty here is the 
incomplete knowledge of the forces of interaction between 
nucleons inside the nuclei and their models. 

In the field of elementary particles there are two lead-
ing models: standard and helicon. 

The standard model [5-7] presents elementary parti- 
cles as quantum objects that can be both wave and parti- 
cle. As particles they have mass, charge, spin, magnetic 

moment, quadrupole moment. The elementary particles 
mainly are modelling with spheres. 

The helicon model [8-11], or ring model is less well- 
known. According to that model the particles have ring 
spiral structure of charged filaments, one or more. The fi- 
laments are superconductors coiled around an imaginary 
ring. The helicon model is consistent with all the widely 
accepted and experimentally verified properties of elemen- 
tary particles. This model implies the assumption that all 
known types of interactions (strong, electroweak, gravi-
tational) should be electromagnetic in nature.   

In [12] we introduce a toroid model of the nucleons that 
is to a certain degree in contradiction with the standard 
model, but it is in full agreement with the helicon model.  

We consider the nucleons as tori, rotating with a con- 
stant angular velocity around an axis z, passing through 
their mass (geometrical) centre O and perpendicular to 
the plane of rotation of their central circle. From quan- 
tum mechanical point of view the nucleon is not a local- 
ized object in the three-dimensional physical space and 
therefore it cannot be consider a sphere or a torus [13]. 
We feel such a model is appropriate in the formal-heu- 
ristic sense of Niels Bohr. It is similar to the old quantum 
theory model of the electron in the hydrogen atom for 
which Bohr obtains good results for the description of its 
spectrums. Modern quantum theory confirms Bohr’s re- 
sults based on other concepts.  

Formal approaches are widely used in physics. In clas- 
sical mechanics for example a variety of formulations ha- 
ve been proposed by Lagrange, Hamilton and others. The 
best example in that sense is quantum mechanics, where 
one introduces the so-called wave function which allows 
for the theoretical derivation of a number of physical pro- 
perties confirmed extremely well by experiment. 

We consider nucleons within nuclei to be space dimen- 
sional objects—tori, within which the electrical charges 
can be redistributed. This assumption does not contradict 
the quark model. The latter enables us to determine the 
electrostatic interaction between them. Based on this mo- 
del, we obtained that the strong interactions are electro- 
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magnetic in nature. To achieve this we used exact analyti- 
cal formulas first obtained by us about the electrostatic 
interaction between two charged conducting spheres with 
arbitrary charges and radii [14]. 

In this paper we apply this method in order to obtain 
the electrostatic interaction between nucleons in the nuc- 
lei of deuterium and tritium.  

As noted by Feynman [15], at distances under 10–15 m 
either Coulomb’s law is not in force or the electrons and 
protons are not point charges. We consider the proton-neu- 
tron couples at distances under 10–15 m. Thus in this 
paper we determine that the known binding energy be- 
tween the nucleons in the deuteron and triton is obtained 
through electromagnetic interactions! We also explain 
the other basic experimental data—spin, magnetic moment, 
stability of the nuclei of deuterium and tritium. Doing 
that, we use the experimentally obtained values of the 
radii and masses of the nucleons and the nuclei. 

We obtain the volumes and mass densities of the nu- 
cleons; we also obtain the force of interaction within the 
nuclei under consideration—results obtained for the first 
time in nuclear physics. 

2. METHOD FOR FINDING OUT  
ELECTROSTATIC INTERACTION 
BETWEEN TWO CHARGED  
CONDUSTIVE SPHERES 

We will represent the part of the method presented by 
us in [10], necessary for performing the calculations for 
the nuclei of deuterium and tritium.  

Let S1 and S2 be two isolated charged conductive 
spheres, with charges Q1, Q2 and radii r1, r2 respectively. 
Let’s denote with R the distance between their centers O1, 
O2 in an inertial system J. Since charges Q1 and Q2 are 
evenly distributed on the surfaces of S1 and S2, it is as- 
sumed that before the interaction between the spheres 
they are concentrated in the centers O1 and O2 respec- 
tively. 

As a result of the electrostatic interaction between S1 
and S2, on their surfaces appear induced charges 1  and 

2 , which are interrelated. Formally, we can consider 
that these charges are located on line segment 1 2 . On 
the surfaces of S1 and S2 appear uniformly distributed 
charges 

Q

O O
Q

1Q  and 2Q , we can assume that they are con- 
centrated in their canters O1 and O2.  

From the law for preservation of electric charges are in 
power the equations: 

1 11 =O Q Q Q 1  and 22Q Q Q  2 .       (1) 

We will determine the charges 1 , 2  and hence the 
charges 

Q Q

1Q , 2Q . Let as a consequence of 1  be gen-
erated image charges 

Q

1, jQ  (j = 1, 2, 3, ···). Because each 

charge 1, jQ  generates 1, 1jQ  , the charges with an odd 
index 1,2 1mQ   (m = 1, 2, 3, ···) are located in the sphere 

2 , and charges with an even index 1,2mQ —in the 
sphere 1 . Similarly are determined the image charges 
S

2,

S

jQ
Q

 (j = 1, 2, 3, ···), arising as a consequence from charge 

2 . The charges with an odd index 2,2 1m  (m = 1, 2, 3 
···) are located in the sphere 1 , and charges with an 
even index —in the sphere . 

Q
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
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2mQ S

1 1r R  and 2 2r R  . We introduce 
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If ,i jd  1,2;i j 1,2  ,3,  are the distances of image- 
charges ,i j , respectively to the centers of the spheres 

, in [14] we obtain that: 
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We find also that: 
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where 0
i 1  at 0i   ( i ). 1,2

2
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charges, located respectively in the spheres  and , 
then 
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and 

2 1, 2m mQ Q Q  

From here and from (4) and (5) it follows that 
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1 11 2Q Q X Q Y 
2  and 2 11 2Q Q Y Q X  

2  

Then, substituting these equations in (1), we get: 
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        (6) 

Lets denote the charges from formulas (4) and (6), 
which are located in the sphere 1  as S jQ , and those 
located in the sphere  as 2S jQ  ( j ). Thus 0,1,2, 

1,0 1 0Q Q Q   and 2,0 2 0Q Q , and for Q  1,2,3,m  , 
, 1,2 2m m2,2 1 2 1m mQ Q  Q Q  and 1,2 1 2 1m m Q Q , 

2,2 2m m . Their corresponding distances to the cen- 
ters of the spheres, where they are situated, we denote 
with 

Q Q

jd   and jd  ( ), where .   0, 1, 2,j  0 0

If 
0 d d 

j jd R   , and j jd R   , then, according to 
Coulomb’s law, for the magnitude F of the projection of 
the force of interaction on , acting on the spheres 

 and , we obtain 
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The potential energy of interaction between the sphe- 
res  and , according to [16], is 1S 2S
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Let us point out that in (7) and (8) we do not take into 
consideration the interactions between the charges inside 
the spheres 1  and 2  as actually the interaction is 
external—between the charges on the surface of  
with the charges on the surface of . 

S S

1S

2

Let M be an arbitrary point in the electric field created 
by charges 

S

jQ  and jQ  ( 0,1,2,j   ). If M is at dis-
tances ja  and jb  from charges jQ  and jQ  respecti- 
vely, then, using the metric relationships in a triangle, we 
can determine 
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Then based on the principle of linear superposition of 
states, the potential at point M will be the sum of the po- 
tentials of all charges in M [16]. Therefore 
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It is worthwhile to mention that using Eqs.7-9 one can 

determine the interaction between two charged spheres 
for arbitrary small distances between them, which repre-
sents a result obtained for the first time. 

3. TOROID MODEL OF NUCLEONS 

Using the results from [14] in [12] we first consider 
the nucleons as spheres, as they are viewed in the stan- 
dard model. In this case we show that at distances 

1610

1610

m we can calculate with good approximation the 
binding energy and force of interaction between nucleons 
by modeling protons as point charges. But at distances 

 m the proton should not be considered as a point 
charge. We also found out that using the standard model 
the binding energy of triton cannot be obtained. Using 
this model it is difficult to explain the experimentally 
obtained magnetic moments of the nuclei relative to the 
magnetic moments of the comprising nucleons; it is also 
hard to explain the experimental results for the radii and 
stability of the nuclei.  

For this reason we remodel the nucleons as tori [12]. 
At that they are rotating with a constant angular velocity 
around a straight axis z, passing through their mass (geo- 
metrical) center O and perpendicular to the plane of rota- 
tion of their central circle (Figure 1). 

After that we study a system of proton and neutron in 
order to determine the electrostatic interaction between 
them.  

The two tori—of the proton and neutron we denote 
correspondingly as pT  and n  and their centers as T pO  
and . We also assume that the central circles of nO pT  
and n  lie in parallel or coincident planes and rotate in 
the same or opposite directions with constant angular ve- 
locity around a the straight line z passing through 

T

pO
 

and n , and perpendicular to the plane of their rotation. 
Thus if 

O

p nO O h , then  (Figure 2). 0h
Let us denote by pK  and nK  the centers of the 

forming circles of the tori pT  and n , and with T

p p pR O K  and n nnR O K —the radii of the central 
circles of pT  and . We assume that nT pT  and  are 
at a distance  from each other. 

nT
1500 1 m 

According to experimental data the radius of the pro-
ton pr  is smaller than the radius of the neutron . Be-
cause of that we consider 

nr

p nR R . 
 

 

Figure 1. Toroid model of nucleon. 
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Figure 2. Cross section of a proton-neutron 
system. 

 
Let pk  and n  be the radii of the forming circles k

pK  and nK . It is clear that p pk R , and n nk R . 
Besides that 

andp p p n nR k r R k r    n        (10) 

where pr  and n  are the corresponding radii of the 
proton and neutron in this configuration. It should be 
noted that for different nuclei 

r

pr , pk , pR

O O

 and , v, 
 may have different values. 

nr

h
nR
From geometrical considerations for p n   will 

be fulfilled the equation 

  22
p n n ph k k R R     2

      (11) 

It is clear that 0 p nh k k     . 
We assume that the volume mass densities of the pro- 

ton and neutron are equal, i.e. p n  . The volumes of 
the tori pT  and , according to [17], are correspond- 
ingly 

nT
2 22πp p p  and n nV . Then if V  k R R2 22πn k pm  

and  are the corresponding masses of nm pT  and ,  nT

then from p n

p n

m m

V V
  it follows that 

n p
n p

p n

m R
k k

m R
             (12) 

In (12) we can substitute the experimentally measured 
masses of the proton and the neutron [18]  

kg, 271.672621638 10pm  271.674927212 10nm  kg. 
Lets denote with  the radius of the empty part 

of the circle with a radius 
0q 

pR . Then 

2p pq r k                (3) 

Further let pT  and nT  from Figure 2 be a proton- 
neutron couple bound in the nucleus of deuterium or 
tritium. If we denote with  the radius of the nucleus 
under consideration, then 

kr
r rn k . 

In order to apply the results from Section 2 for spheres 
we will remodel the tori. 

We will emphasize that the potential energy and the 
force of interaction between two spheres depend on the 
distance between image-charges, i.e. from the lengths of 
the line segments   from for- 

mula (3). These lengths in (3) are determined from the 
squares of the radii 1  or 2  of the spheres and from 
the length of their central line 1 2

,i jd  1,2; 1,2,3,i j  

r r
R r r    , where   

is the smallest distance between their surfaces. For the 
square of the radii of each of the two spheres is fulfilled 

2 4πi ir L , 1, 2i  , where i  is the surface area of 
the corresponding sphere. Therefore, when we remodel 
the tori of the proton and the neutron we have to keep 
both their surface areas 

L

pL  and  and the distance nL
  between them.    

Due to the central symmetry of the charge of the pro-
ton we can consider all of its charge  to be concen-
trated in the geometrical center 

p

pO  of the torus pT .     
Therefore we remodel the proton as a sphere pS , with 

radius Pr  and the same centre pO  on the straight line 
z and a surface area equivalent to the torus surface area, 
i.e. it has the same surface area as the torus pT . At that 

pS  is charged with a charge  that is centrally sym-
metrical and can be redistributed.    

p

The surface area pL  of a torus pT  according to [17] is 
24πp p pk RL              (14) 

Then, as the surface areas of the torus pT  and the 
sphere pS  are equal, then from (14) it follows that the 
radius of pS  is  

πP p pk Rr

T

             (15) 

We remodel the neutron n  with a torus NT  with an 
equivalent surface area. At that NT  has the same center 

n  on z and its surface is at the same distance O   from 
the surface of pS  as in the case of  and nT pT  (Fig-
ure 3).  

Let NS  be a sphere. Its central circle, is forming for 
the torus NT . We denote the centre of NS  with NK , at 
that n N NRO K   and with Nr —the radius of NS . 
Thus if p NO K R  then P NR r r     and from 

p nO O h  it follows that 2 2  2hNR R , i.e.  

 2 2
NR r r hN P         (16)    

It is clear that max N p NR r r     and min N NR r . 
From the equality of the surface areas NL  and  

of the tori 
nL

NT  and , it follows that nT

n
N n

N

R
r k

R
               (17) 

For the number l  of spheres NS  which have total 
surface area equal to the surface area of the torus NT  is 
fulfilled 2 2π.4π 4N N Nl r R r . Therefore 

π N

N

R
l

r
                (18) 

We assume that the centre pO  is motionless relative 
to the inertial reference system J. We introduce a solid 
non-inertial reference system G that rotates with the con-
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stant angular velocity   of rotation of NT  relative to J. 
At that, the point pO  is the centre of the coordinate 
system p , stationary connected with G and relative 
to which the spheres 

O xyz

PS  and NS  are motionless to 
each other (Figure 3). 

Then for the experimentally obtained value of k nr r , 
giving values to q, from Eqs.10-13 we calculate pR , 

pk , pr , n  and . With those and formula (15) we 
obtain the radius 

R nk
πP p pRr  of the surface-equi- 

valent sphere 
k

PS
h k k

. Varying m and    150 1 0 
0 p n     , from formulas (16) and (17) we-
calculate the radius Nr  of the forming sphere NS .   

Thus at P NR r r   



, through formulas (7) and (8), 
we find the binding energy NW S  and force of 
interaction 

 ,P S
 ,P NF S S

 ,
. According to (18), the binding 

energy p nW T T  and force of interaction  ,p nF T T  
between a the proton and the neutron will be 

   

   
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N
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r
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r

,

,

P

P

S

Sπ




        (19) 

The Eqs.19 are valid because the forming spheres of 
the torus NT  are situated symmetrically relative to the 
centre of the sphere PS . 

Moving on we will structure the nuclei of deuterium 
and tritium. The positioning of the nucleons in them must 
correspond to the principle of minimum potential energy. 
Due to the mass defect in the nucleus, the potential en- 
ergy of the interaction in the atomic nuclei is calculated 
by the following formula [2]: 

 pW N m N m   2
K cK p n nm        (10) 

Here pN  is the number of the protons,  – 
number of the neutrons; p

nN
27101.67262m 1638  

27
kg 

and kg are the masses of the 
proton and of the neutron, respectively [18] and 

1.674927212 10nm 
Km

58 10
 is 

the mass of the considered nucleus;  
m·s–1 is the velocity of the light in flat vacuum [18]. We 
will find the values of 

82.997924c  

KW  according to our method 
with formula (8), comparing them with the values obtai- 
ned through formula (20).   
 

 

Figure 3. Cross section of reduced mo- 
del of the proton-neutron system. 

Let us consider the proton in a unbound state as a torus 
0
pT . Its radius according to [19] is 150.84184 10pr   m. 

If 0
pK  is the center of the forming circle of 0

pT , then we 
denote as 0

pk  the radius of this circle and with 0 0
p pR OK . 

Using formulas (10) and (13) for different values of 
the radius of the circle of the empty part q we find 0

pk , 
0
pR , 0

pV  and 0
p . We also find the volume  of the 

neutron in a free state since we know its mass  and 
we have assumed that 

0
nV
m0

n
0 0
p n  . All the data are given in 

Table 1. 
In Table 1 we have denoted with pk  the radius of the 

forming circle of the torus of the proton and with pR  
the radius of the central circle of the torus of the proton. 

Due to the mass defect in atomic nuclei the volumes of 
the nucleons within them change. We will assume how-
ever that the volume mass densities of the proton and 
neutron do not change, i.e. . 0 0

p n const    

4. MODEL OF THE DEUTERON 

We model the nucleus of deuterium as two concentric 
toroids inlaid one in the other. The internal torus pT  
corresponds to the proton and the external one n  cor- 
responds to the neutron with 

T

pT  and nT  being at a 
distance 150 10   m. This configuration provides 
symmetry relative to the center of masses O of the deu- 
teron placed in its geometrical center (Figure 4). From 
that follows the stability of the deuteron . T  

We assume that both tori spin in the same direction 
with a constant angular velocity   around the line z 
going through their common center p nO O O   and 
perpendicular to their plane of rotation. 
 
Table 1. Size, volume and mass density of the proton and neu-
tron. 

q

m
pk  

m 1510
pR  

m 1510

0

pV  

m3  4510

0

nV  

m3  4510

0 0

p n   

kg·m–3 1810

0.3rp 0.29464 0.54720 0.93771 0.939001 1.78373 

0.4rp 0.25255 0.58929 0.74192 0.742946 2.25444 

0.5rp 0.21046 0.63138 0.55203 0.552787 3.02997 

0.6rp 0.16837 0.67347 0.37685 0.377369 4.43843 

0.7rp 0.12628 0.71556 0.22523 0.225537 7.42639 

 

 

Figure 4. Cross-section of the model of the 
deuteron. 
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From this structure follows that the spin Ds  of the 
deuteron will be a sum of the spins 1 2p n  of the 
proton and neutron, i.e. the spin of the deuteron is 

, which has been experimentally obtained. 

s s 

1Ds 
The nucleons, binding to each other within the deu- 

teron almost double their total mass relative to their se- 
parate masses and as a consequence the centrifugal force 
increases. From this follows that the radius of the deu- 
teron is larger than the radii of the nucleons and as has 

been experimentally determined it is 152.14 10Dr
  m 

[18]. 
Let us assume that the charge of each of the nucleons 

is distributed parallel along a circle with a center O. Then 
a circular current appears and the magnetic moments of 
the nucleons are proportional to the magnitude of the 
charges and their angular velocity but also to the square 
of their distance from the center of rotation. The inlaying 
of the proton within the neutron increases the radius of 
the neutron more relative to the increased radius of the 
proton. This explains why the sum of the magnetic mo- 
ments of the proton JT–1 and neutron 

 JT–1 is larger than the magnetic 
moment of the deuteron  

261.4106 10p
 

260.9662 10n
  

260.4331 10D
   JT–1 [18]. 

Let pK  and nK  be the centers of the forming cir- 
cles of pT  and nT  and let the radii of those circles be 

pk  and  correspondingly. We denote as nk p pR OK  
and n n  the radii of the central circles of the tori R O K

pT  and T  (Figure 4). n

In this case  and p n , also 

n D n  and n p

p nO O O 
2p DR r

0O h O
kR r k  k     . Based on the 

method we described in Section 3 using mass volume 
density   of the nucleons from Table 1 we find n , 

n , 
k

R pk  and pR



. In formula (12) we consider the mass 
defect, proportionally for the masses of the proton and 
neutron. The experimentally obtained mass of the deu- 
teron is D kg [18]. Then, according to 
formula (20), the binding energy of the deuteron is 

 J. 

273.3436 10 

1310

m

3.5642W  D

This value we confirm at different values of the dis-
tance   between the tori (Table 2) for  , p nW T T



 with 
the corresponding formula from (19). From (19) we also 
obtain the force of interaction  ,p nF T T  for the deu-
teron. 

In Table 2 we have denoted with n  and k pk  res- 
pectively the radius of the forming circle of the torus of 
the neutron and the proton, with n  and R pR  respect- 
tively the radius of the central circle of the torus of the 
neutron and the proton and with DF  the force of inter- 
action between the nucleons in the deuteron. 

5. MODEL OF THE TRITON 

The triton is obtained structurally from the deuteron 

by adding one more neutron. The second neutron tries to 
take over the place of the first one.  

The neutron, although it can be assumed electrically 
neutral, i.e. with a common charge n = 0, has an internal 
electric structure, its negative charge, as opposed to the 
positive one is distributed primarily at its surface [20,21]. 

Then because of the repulsion between the tori  
and  the central circles of the nucleons will be situ- 
ated symmetrically in two planes parallel to the plane in 
which the central circle of proton torus 

1
nT

2
nT

pT  is situated. 
At that  and  will be at the same distance  1

nT
1

2
nT

1500    m from pT

i

. This configuration provides 
symmetry relative to the center of masses (geometrical 
center) O of the triton (Figure 5). From this follows the 
relative stability of the triton y. 12.262T 

Let us denote as nO  the centers of the tori nT  i

 1,2i   and as pO —the center of pT . Then the cen-
ter pO O  and the points  are on the same line z, 
perpendicular to their plane of rotation. 

i
nO

The tori pT  and  rotate around z with a constant 
angular velocity 

1
nT

  in the same direction (e.g. clockwi- 
se) and nT  will rotate with the same velocity in the 
opposite direction (counterclockwise), i.e. with a velocity 

2

 . Thus we obtain that the spin of the triton is 
1 2Ts   which is experimentally confirmed.  

 
Table 2. Size of the nucleons and force of interaction in the 
deuteron. 

  

kg·m–3 1810

  

m 1710
nk  

m 1510
nR  

m   1510

pk  
m   1510

pR  

m 1510
DF

N  

1.78373 2.30200 0.15489 1.9851 0.17047 1.6367 −1 962

2.25444 2.28778 0.13717 2.0028 0.14906 1.6937 −2 045

3.02997 2.27329 0.11775 2.0223 0.12629 1.7555 −2 147

4.43843 2.25592 0.096787 2.0432 0.10244 1.8214 −2 284

7.42639 2.23334 0.074418 2.0656 0.077722 1.8911 −2 479

 

 

Figure 5. Cross-section of the model of the 
triton. 
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The neutron that rotates in an opposite direction will 
decrease the centrifugal force caused by the nucleons 
rotating in the same direction. Therefore the radius of the 
triton . According to experiments T Dr r 151.6 10Tr

   
m [22]. 

The magnetic moments caused by the redistributed 
charges in the neutrons cancel each other out. Thus the 
magnetic moment of the triton is caused only by the 
charge of the proton. As a consequence of the increased 
radius of the proton relative to the free state the magnetic 
moment of the triton  JT–1 is larger 
than the magnetic moment of the proton 

261.5046 10T
 

p
261.4106 10   

JT–1, as shown by experimental data [18].  
Let pK  and i

nK  be the centers of the forming cir- 
cles respectively of pT  and  with corresponding 
radii 

i
nT

pk  and  . We denote i
n ik  1,2  p pOK R  and 

for , .  1, 2i i iO K 
h O

i
nR
iO

n n

In this case  and if  is the radius of the 
triton, then . 

n
i i
n T nR r k 

Tr

Due to the central symmetry of the charge of the pro- 
ton we can assume that all of its charge  is con- 
centrated in the geometrical center O. Because of that we 
model the proton as a sphere 

0p 

PS  with a center O and 
radius Pr , equivalent in surface are to pT . At that pS  
is charged with a charge , which is centrally symmet- 
rical and can be redistributed. 

p

With i
NT  ( ) we denote the tori that are equiva- 

lent in surface to  with centers  and centers of 
the forming circles 

1, 2i 
i

nT i
nO

i
NK  (Figure 6). At that PS  and 

i
NT  have the same distance   between them as pT  

and . With i
nT i

NS   we denoted the forming 
sphere of 

 1, 2i
i

NT . 
We assume the point O to be stationary relative to the 

inertial reference frame J. We introduce two solid non- 
inertial reference systems 1  and 2 , that rotate with 
the constant angular velocities 

G G
  and   respectively 

of 1
NT  and 2

NT  relative to J.  
The point O is a center of the coordinate system 

i i  stationary connected with the reference system 

i   relative to which the spheres 
Ox y z
G i  1,2 PS  and i

NS  
are stationary to each other (Figure 6). 

The two tori 1
NT  and 2

NT  are symmetrical relative to 
the sphere PS . Then it is enough to study the electro- 
static interaction only between one of them and PS

1
. We 

assume with some approximation that between NT  and 
2

NT  there is no electrostatic interaction since their total 
charges are zero. Besides that, to simplify the calculations, 
we assume that the distance between the surfaces of each 
of the tori is the same and equal to  . Then the distance 

2nh k   . 
Since n T , using the model we revealed in Section 

3, with the volume mass density 
r  r

  of the nucleons 
from Table 1 we find ,  and i

nk i
nR pk , pR . In formula 

(12) we consider the mass defect proportionally for the 

masses of the proton and two neutrons. The experiment- 
tally obtained mass of the triton is 275.00735588 10Tm  

13

 
kg [18].  

Then, according to formula (20) the binding energy of 
the triton is  J. This value we con- 
firm for different values of the distance 

13.5895 10TW   
  between the 

tori (Table 3) for W W ,  or  , i
T p nT T 1i  2i2   

using the corresponding formula from (19). From (19) 
we also obtain the force of interaction for the triton 

 , i
p n2TF F T T 1i for   or i . 2

kIn Table 3 we have denoted with n  and pk  respec- 
tively the radius of the forming circle of the torus of the 
neutron and the proton, with n  and R pR  respectively 
the radius of the central circle of the torus of the neutron 
and the proton and with TF  the force of interaction be- 
tween the nucleons in the triton. 

We should note that by determining the value of , 
we can also vary h, where in this case is fulfilled  

TW

n p nk h k k     . 

6. DISCUSSION 

In [12] considering the nucleons as tori we theoretic- 
cally determine the potential energy and the force of in- 
teraction in the systems: proton-neutron, proton-proton 
and proton-neutron-proton, which we derive using ex- 
perimentally obtained results for the radii and the masses 
of the nucleons in unbound condition. 
 

 

Figure 6. Cross-section of the reduced model 
of the triton. 

 
Table 3. Size of the nucleons and force of interaction in the 
triton. 

  

kg·m–3 1810

  

m 1710
nk  

m 1510
nR  

m  1510 

pk  
1510

p

m  

R  

m 1510
TF  

N  

1.78373 1.17113 0.18353 1.4165 0.21248 1.0554 −9 979

2.25444 1.16356 0.16203 1.4380 0.18322 1.1230 −10 393

3.02997 1.16033 0.13864 1.4614 0.15324 1.1944 −11 045

4.43843 1.15927 0.11358 1.4864 0.12284 1.2690 –11 649

7.42639 1.15838 0.08703 1.5130 0.092201 1.3462 −12 933
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Using our method, we have shown that the electro- 
magnetic forces for the proton-neutron pair are quite 
strong (in the order of the nuclear forces) an short-ranged. 
This suggests that the binding energy of the nucleons 
have electromagnetic nature. We can also explain other 
basic experimental data like stability, radius, magnetic 
moment and spin of the nuclei. 

In this paper, we concretize the general results obtai- 
ned in [12] for the nuclei of deuterium and tritium. 

7. CONCLUSIONS 

Nuclear physics bases its knowledge on experiments 
and has numerous different contradicting models. Con- 
sidering nucleons as tori and modeling the deuteron and 
triton, we obtain and explain their basic experimentally 
obtained characteristics and also obtain new characteris- 
tics of these nuclei. 

Our model can also be applied for more complicated 
atomic nuclei. Based on particular charge and current con- 
figurations to it can be considered the interaction between-
nucleons in electrodynamic aspect; to be find analytical 
expressions for the magnetic moments, to determine the 
angular velocity of nucleons, the linear velocity at parti- 
cular points on their surface, etc.; to explain excited states 
of the nuclei; to be find out the potential of the electro- 
magnetic field generated by atomic nuclei and to calcu- 
late their quadrupole moments for the deuteron and the 
other nuclei. 
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