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Abstract 
Polar codes using successive-cancellation decoding always suffer from high 
latency for its serial nature. Fast simplified successive-cancellation decoding 
algorithm improves the situation in theoretically but not performs well as ex-
pected in practical for the workload of nodes identification and the existence 
of many short blocks. Meanwhile, Neural network (NN) based decoders have 
appeared as potential candidates to replace conventional decoders for polar 
codes. But the exponentially increasing training complexity with information 
bits is unacceptable which means it is only suitable for short codes. In this 
paper, we present an improvement that increases decoding efficiency without 
degrading the error-correction performance. The long polar codes are di-
vided into several sub-blocks, some of which can be decoded adopting fast 
maximum likelihood decoding method and the remained parts are replaced 
by several short codes NN decoders. The result shows that time steps the 
proposed algorithm need only equal to 79.8% of fast simplified succes-
sive-cancellation decoders require. Moreover, it has up to 21.2 times faster 
than successive-cancellation decoding algorithm. More importantly, the pro-
posed algorithm decreases the hardness when applying in some degree. 
 

Keywords 
Polar Codes, Decoding Latency, Fast Simplified Successive-Cancellation  
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1. Introduction 

Polar code was proved to be first class capacity-achieving codes of symmetric 
binary-input memoryless channels using SC decoding algorithm when the code 
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length goes to infinity by Arıkan [1]. However, two problems hinder the adop-
tion of polar codes: the error-correction performance is not reason-able for fi-
nite code length; and they suffer from high latency as well as limited throughput 
due to the serial nature of the SC decoding algorithm. New algorithms are pro-
posed to improve the error-correction performance of SC decoding algorithm 
such as successive cancellation list (SCL) decoding algorithm [2] [3] [4] [5] [6], 
successive cancellation stack (SCS) decoding algorithm. But these algorithms 
realize better performance at the cost of higher computational complexity and 
lower throughput. In this work, we focus on the latency issue, which is exacer-
bated by the requirement of long codes since the parallel algorithms such as BP 
decoding achieve lower latency while introducing an unacceptable computation-
al complexity [7]. 

To reduce the decoding latency without having a bad influence on the er-
ror-correction performance, simplified successive-cancellation (SSC) decoding 
was proposed to take advantage of rate-zero and rate-one nodes. The latency of 
SC decoding varied almost between two and twenty times that of SSC decoding 
depending on code length [8]. Further, Gabi Sarkis present a fast simplified suc-
cessive-cancellation decoder (fast-SSC) that improves the decoding speed by uti-
lizing single-parity-check (SPC) node, repetition (REP) node [9]. However, the 
theoretical advantages of fast simplified successive-cancellation decoder can only 
turn into reality when the corresponding sub-blocks are worth to be solved this 
way. In practical, heavy burden faced by nodes identification and presence of 
massive short blocks for long codes restrict the use of fast simplified succes-
sive-cancellation decoder. As a result of this, our main work is trying to solve 
these difficulties to enhance the decoding efficiency. Later, a new approach using 
NN (neural network) has been proposed to realize to decode polar codes with 
MAP performance for small block lengths in [10], but the NN decoder’s training 
complexity increases exponentially with information bits in the code words lim-
its its use. Inspired by this, NN decoding may be helpful to improve fast-SSC 
decoder, because NN decoder estimates the bits by passing each layer only once 
which promises low-latency implementations and it can avoid too short blocks 
according to our design. 

2. Fast Simplified Successive-Cancellation Decoding 
2.1. The Fast-SSC Decoder 

A fast-SSC decoder graph is built by transforming a non-bit reversed polar code 
graph into a binary tree of five node types: rate-0 nodes, rate-1nodes, REP nodes, 
SPC nodes and rate-R nodes, denoted 0 1, , ,REP SPC     and R  respec-
tively. A polar code consist of frozen bits are 0  nodes, non-frozen bits are 

1  nodes. Only Nu  is information bits are REP  nodes and the SPC  
nodes referring to only 1u  is frozen bits. Finally, a node whose descendants 
contain different types mentioned before is an R  node. 

A polar code can be represented by a binary code tree in which every node 
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represents a codeword. Figure 1 depicts a length-32 polar code using binary-tree 
expression. The white leaf nodes represent the frozen, black ones represent the 
information bits and grey ones represent nodes containing both frozen bits and 
information bits. 

It illustrates the SC decoding binary tree of polar code (32,16) . For a node 
of length vN , the estimated hard values pass { }0 1 1, ,...,

VNβ β β β −=  from its 
child nodes to the parent node, while the channel log-likelihood ratios (LLR) 
values { }0 1 1, , ,

VNα α α α −= …  pass through the opponent direction. Once α  is 
available from the parent, the left child node { }0 1 /2 1, , ,

v

l l l l
Nα α α α −= …  and the 

right child node { }0 1 /2 1, , ,
v

r r r r
Nα α α α −= …  are calculated using the min-sum 

(MS) approximation [11] to simplify calculation as: 

( ) ( ) ( )/2 /2, .
v v

l
i i i N i i Nsgn sgn minα α α α α+ +=              (1) 

( )/2 1 2
v

r l
i i N i iα α β α+= + − .                   (2) 

in which the lβ  are got through lα . Then after the rβ  have been calculated, 
the β  values can be passed as follows: 

/2

, if / 2

, otherwise
v

l r
i i v

i r
i N

i Nβ β
β

β −

 ⊕ <= 


　
                   (3) 

where the ⊕  is xor operation. Finally, the estimated message bits û  are de-
termined as 

0, if or 0
ˆ

1, otherwise
i

i

i
u

α∈ ≥
= 



                    (4) 

In SC decoding process exists quite a large number of redundant operations 
which results in a high latency of 2N-2. Besides, the estimated hard values of 
some bits do not depend on LLR, so it is unnecessary to calculate all the LLR.  

 

Rate-0

SPC

Left

Right

Rate-1

SPC

REP

Rate-R

 
Figure 1. Decoder trees corresponding to the decoding algorithms. 
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SSC decoding algorithms are proposed to avoid the redundant operations and 
high latency in SC decoding but the effect is limited. Further, fast-SSC decoding 
is proposed and there is a fast maximum likelihood decoding method for the 

0 1, , ,REP SPC     mentioned before in the binary tree so that the corres-
ponding decoding can be completed in one step for each node. 

2.2. The Study of Fast-SSC Decoder 

Although the four-types nodes can simplify decoding stage to realize lower la-
tency, their expectation can only be fully realized when the corresponding co-
deword length reaches a certain length. In fact, it cannot perform quite better 
than SC decoding method when the sub-blocks are short while increase the 
workload of node type recognition in practical. So, in our work, the distribution 
of information bits and frozen bits of polar codes is studied to select the appro-
priate sub-block size. 

The basic idea of polar codes is to construct a coding system in which the in-
formation bits are transmitted in higher reliability channels, while other chan-
nels with lower reliability are used to carry frozen bits (usually set to be 0). Be-
cause the Bhattacharyya parameter cannot accurately describe the actual channel 
situation. Many methods such as density evolution (DE), Gaussian approxima-
tion (GA) and polarization weigh (PW) have been proposed to assess channel 
reliability accurately. The GA-based channel reliability evaluation is related to 
the channel, while the reliability order relationship of these channels can be 
determined in a fixed way regardless of channel conditions. In fact, the code 
length corresponding to 0 1, , ,REP SPC     is not small in a long polar 
code. 

Here we count the number of four types nodes and the corresponding length 
of a 16,384-length polar code with code rate 0.2, 0.5, 0.8 which represents dif-
ferent level of code rate using GA to construct the code. The parameter noise va-
riance 2σ  is set to 0.81 and the result is shown in Table 1. 

Similar situation appears when count other code length. In fact, for a long po-
lar code, there are many nodes belonging to the four types nodes. When the code 
rate is high or low, there exists few but very long 0 1,   constituent codes. 
Besides, the long polar codes also have a large number of ,REP SPC   consti-
tuent codes especially when the code rate is moderate. Therefore, it can greatly 
simplify the decoding process and reduce the decoding latency adopting the 
fast-SSC. However, we can also see many nodes belonging to these types only 
with code length of 2 or 4. For these parts, fast-SSC has limited simplification 
capabilities and heavy workload of identifying nodes. Finally, the codewords are 
only divide into a large amount of parts at least 8-length. After we take block 
length into account, finding a method to process these rate-R nodes become our 
main work. Here we only analyzed GA algorithm because it's relatively easy to 
describe, but analysis about other algorithms for polar codes construction leads 
to the same or extremely approximate conclusion. 
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Table 1. Number of four type nodes of different sizes in three polar codes of length 16384 
and rates 0.8 0.5, and 0.2. 

Code Code Rate 
rate-0, vN ∈  

(0, 4] (4, 64] (64, 4096] (4096, 16,384] 

(16,384, 13,107) 0.8 173 0 0 0 

(16,384, 8192) 0.5 0 0 0 0 

(16,384, 3277) 0.2 0 0 0 1 

  rate-1, vN ∈  

  (0, 4] (4, 64] (64, 2048] (2048, 16,384] 

(16,384, 13,107) 0.8 56 132 4 1 

(16,384, 8192) 0.5 0 3 0 0 

(16,384, 3277) 0.2 0 0 0 0 

  
SPC, vN ∈  

(0, 4] (4, 64] (64, 1024] (1024, 16,384] 

(16,384, 13,107) 0.8 610 203 0 0 

(16,384, 8192) 0.5 1231 275 0 0 

(16,384, 3277) 0.2 464 54 0 0 

  
REP, vN ∈  

(0, 4] (4, 64] (64, 1024] (1024, 16,384] 

(16,384, 13,107) 0.8 885 70 0 0 

(16,384, 8192) 0.5 2088 286 0 0 

(16,384, 3277) 0.2 1008 273 0 0 

3. NN-fSSC Decoder for Codes 

It shows that neural networks can be used for decoding and approximate MAP 
performance with enough training times in [5]. Compared with other decoding 
algorithms, neural network decoding does not require iteration and achieve low 
latency for its high parallelizable structure, but the training complexity limits 
neural networks only suitable for short codes. Different from fast-SSC decoders 
that are designed to decode special constituent codes, the NN decoder here is 
trained to decode any node without considering the locations of frozen bit and 
information bit. Obviously, neural network just rightly be used to as an alterna-
tive to decode rate-R nodes, which can not only reduce the workload of node 
recognition, but also lower the decoding delay. In this paper we use N to denote 
code length, R to denote code rate, K to denote information length,   to de-
note free set, and   to denote frozen set. The information bit is 0 or 1 and the 
frozen bit is 0. 

The source sequence ( )1 1 2, , ,N
Nu u u u= …  are encoded to codeword  

( )1 1 2, , ,N
Nx x x x= …  with   to place the K information bits and   to place 
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the frozen bits. We use 1
Ny  to denote the output of noisy channel after modula-

tion and the input of polar decoder. The output of the decoder is denoted by 

1
Km . Then we should get the decoding results 1

Km  to approximate to the origi-
nal K information bits using our NN decoder, then y and m become training 
data in this machine learning problem. 

As shown above, the NN decoding problem is a machine learning problem. 
To make the trained neural network be fit for the test data when decoding, a 
large amount of data must be necessary. Here, we can generate enough training 
data labeled. Under this condition, we can train on unlimited training set by 
simply increasing the number of epochs epM . The process of collecting training 
data for each NN decoder is shown in Figure 2. As shown in this figure, we need 
to add two additional layers without trainable parameters into the NN before 
decoding layers, one for modulation, the other for adding noise randomly. In 
this paper, binary phase shift keying (BPSK) modulation and an additive white 
Gaussian noise (AWGN) channel are used for simplifying problem. It shows the 
system’s work process. We use the whole NN when training, but use only de-
coding layers when decoding. 

A fully connected NN decoder contains M hidden layers with the size of 
{ }1 2 ,, , tL L L… , where 0tL >  and 1 ≤ t ≤ M. The size of the input of the net-
work is equal to the sub-block length, here is 8. The size of output layer is set to 
the number of output bits. 

The full network structure can be expressed as  

{ } { }0 1 1, , , , 8,16 ,8 ,M ML L L L K K K+ = , 

where 0L  and 1ML +  denote the size of the input and output layers, respective-
ly. In order to make the training process more efficient and avoid neurons inva-
lidity during training process, we set the activation function to be Leaky ReLU 
for 0 < m ≤ M, and the sigmoid function for m = M + 1. The sigmoid function 
restricts the range of the decoder’s output values to [0, 1]. 

max(0.01 , )Leaky ReLU x x=                    (5) 

1
1 xSigmoid

e−=
+

                       (6) 

To evaluate the decoding performance, the binary-cross-entropy (BCE) functions  
 

 
Figure 2. Deep learning setup for channel coding. 
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is adopted to express the expected loss of the neural network as 

( ) ( ) ( )1 ln 1ˆ ln 1 ˆBCE i i i ii a a
k

a a = − + − − ∑              (7) 

where { }0,1ia ∈  is the ith information bit and { }ˆ 0,1ia ∈  is the estimation of 
NN. 

Simulations result in Figure 3 shows that NN decoder trained has similar BER 
performance with these conventional decoders as long as the epochs is large. 

For a long polar code, all the node types in a binary tree can be divide into two 
parts, type-nodes denoted 0 1, , ,REP SPC     and NN-nodes denoted R . 
In NN-fSSC decoder, the type-nodes using fast maximum likelihood decoding 
method and the NN-nodes using NN decoding. After the training stage, NN de-
coder obtains its weight and bias matrices used to decode R . 

Since we care about the decoding latency here, we assume that hardware re-
sources are met, which means the minimum time steps to approximately meas-
ure the efficiency of decoders. The number of time steps required to finish the 
decoding process in the NN-node is dependent on the number of hidden layers 
and can be calculated as 1NNT M= + , here NNT  is 3. As type-node only require 
one time step, so in NN-fSSC decoder, each type-node or NN-node can reduce 
different time steps which is corresponding to their length. However, each 
NN-node need three steps to decode which means two extra steps introduced. 
On this basis, the decoding latency in terms of the number of time steps for the 
proposed NN-fSSC decoder can be approximately calculated as 

-

33 2 2 2 .
2 2

part
NN fSSC parts NN

NNT n n
 

= − − − +  
 

∑             (8) 

where partN  is the length of type-node or NN-node, NNn  is the number of 
NN-nodes. 

 

 
Figure 3. Performance of NN decoders. 
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5. Simulation Results and Analysis 
5.1. Performance of NN-fSSC Decoder 

Although the aim of NN-fSSC is to decrease decoding latency, this cannot at the 
cost of error-correction performance degeneration. 

Figure 4 illustrates the Simulations of a (2048, 1024) and a (16,384, 13,107) 
polar codes when transmitting random codewords over the additive white Gaus-
sian noise (AWGN) channel using binary phase shift keying (BPSK). In this fig-
ure, fast-SSC and NN-fSSC decoding has a negligible effect on error-correction 
performance which is affected slightly by code rate. 

5.2. Efficiency of NN-fSSC Decoder 

In order to study the extent of improvement which can be achieved in decoding 
delay, two significant factors (code rate R and codelength N) affecting the de-
coding speed of fast-SSC and NN-fSSC are observed. We compare the proposed 
algorithm with some current algorithms, like SC and fast-SSC. 

Overall, NN-fSSC decoder perform better than SC and fast-SSC decoder, 
where it can be observed that NN-fSSC is 4.7 to 21.2 times faster than SC, and 
that the latency of NN-fSSC is approximately 79.8% of the fast-SSC. Besides, the 
change of time steps shows a clear relationship with code rate in the decoding 
process. Figure 5 illustrates this trend for a polar code of length 2048 and 
16,384, when the code rate is moderate, the introduction of NN can bring great-
er progress as there exists more short length nodes in moderate rate codes. High 
code rate decreases slightly more than low code rate. 

Finally, to study the influence of code length N on the decoding time latency, 
the information throughput of nine polar codes of lengths varying from 210 to 214 
is shown in Figure 6 for code rates 0.2, 0.5, and 0.8. 

 

 
Figure 4. FER of fast-SSC and NN-fSSC. 
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Figure 5. Time steps of the fast-SSC, NN-fSSC decoders for a code with different code length. 

 

 
Figure 6. Time steps of the fast-SSC, NN-fSSC decoders for different codes of rates. 

 
It shows that NN-fSSC decoder appears greater advantage with code length 

increasing when the code rate is same. So, the NN-fSSC decoder is more suitable 
for codeword which has a certain length. 

6. Conclusions 

In this paper, firstly we studied the principle of fast-SSC decoders and find that 
conventional fast-SSC decoders cannot perform well in practical, because lots of 
short sub-blocks require much work in nodes identifying. Then we divide 
fast-SSC decoders into groups with certain length to lower the difficult of iden-
tifying in some degree. Secondly, we train NN decoders for short polar codes. It 
rightly can be used to decode the sub-blocks which are not suitable for fast-SSC 
decoders. Finally, we propose NN-fSSC decoders combined by fast-SSC decoders 
and NN decoders for long polar codes. According to our simulation, NN-fSSC 
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decoders increase the decoding efficiency largely and make nodes identification 
easier with acceptable performance, which means this paper’s main purpose ac-
complished. 

In this paper, we mainly concern the decoding latency, but as for our future 
work, combination of NN and fast-SCL may be a good choice for improving 
performance. 
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