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Abstract 
A set of discoveries are described that complete the structural model and dif-
fraction theory for quasicrystals. The irrational diffraction indices critically 
oppose Bragg diffraction. We analyze them as partly rational; while the irra-
tional part determines the metric that is necessary for measurement. The 
measurement is verified by consistency with the measured lattice parameter, 
now corrected with the metric and index. There is translational symmetry 
and it is hierarchic, as is demonstrated by phase-contrast, optimum-defocus 
imaging. In Bragg’s law, orders are integral, periodic and harmonic; we dem-
onstrate harmonic quasi-Bloch waves despite the diffraction in irrational, 
geometric series. The harmonicity is both local and long range. A break-
through in understanding came from a modified structure factor that features 
independence from scattering angle. Diffraction is found to occur at a given 
“quasi-Bragg condition” that depends on the special metric. This is now ana-
lyzed and measured and verified: the metric function is derived from the irration-
al part of the index in three dimensions. The inverse of the function is exactly 
equal to the metric that was first discovered independently by means of “qua-
si-structure factors”. These are consistent with all structural measurements, in-
cluding diffraction by the quasicrystal, and with the measured lattice parameter. 
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1. Introducing Harmonics in Hierarchy 

“A metallic phase with long range order but with no translational symmetry” 
[1], how come? The greater the prize, the worse the gaff: the translational sym-
metry is strictly hierarchic [2]-[15]. How, in particular, can the diffraction 
represent long range order when it occurs as irrational numbers, aperiodically 
ordered, and in geometric series? Since Bohr’s atom, all of modern wave physics 
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have required harmonic solutions; how does that strange series harmonize? This 
study shows precisely how the exceptional harmony occurs. 

The original solid-state phase was discovered in 1982 and published in 1984 
[1], shortly before my hierarchic proposal in 1986. After twenty years in the dol-
drums, Senechal wrote for the American Mathematical Society, “What is a qua-
sicrystal?” The paper began, “The short answer is no one [knows]” [16]. She was 
mistaken: I had by then discovered the quasi-structure factor and metric [2] [3] 
[6]. These were based on phase-contrast, optimum-defocus images [17] which 
identify the locations of the heavier atom in the Al6Mn icosahedral alloy, owing 
to high atomic scattering factor. Knowing all of the microscope magnification, 
the image pattern, and the diffraction pattern, it was obvious that the unit cell is 
Al12Mn, with stoichiometry Al6Mn because of edge sharing. These cells are hie-
rarchically arranged, each order having 6 five-fold rotation axes. In particular, 
four tiers of hierarchic structure are evident in the data and this structure was 
shown to be infinitely extensible: it is logarithmically periodic with period 2τ , 
the square of the golden section ( )1 21 5 2τ = +  [18]. 

To calculate the diffraction pattern from the known structure, it was necessary 
to correctly index [9] the original diffraction pattern [1] [2]. From stereographic 
projections of the icosahedral axes and diffraction planes, the indexation was 
shown to be three dimensional, in geometric series, simple and complete. The 
planes are normal to the three-dimensional axes. Mathematicians choose six di-
mensions; physicists falsify them. 

A breakthrough in understanding of the diffraction pattern followed our rea-
lization that the structure factor is independent of scattering angle and can be 
simply calculated from our knowledge of the structure [2] [14]. Prima facie, the 
structure factor was inconsistent with data. This inconsistency was half expected 
because of known “quasi-periodicity”, so we included two adjustments to the 
formulae. Firstly, a coherence term sc  which has the effect similar to making 
the structure breath so that the quasi-Bragg condition became evident by sudden 
diffractive coherence, that is similar to Bragg coherence observed by rotation of 
a crystal through the Bragg condition: suddenly on and suddenly off. Bragg dif-
fraction is bi-planar where quasi-Bragg diffraction is multi-planar [14], but the 
breathing coherence provides sharp diffraction at the quasi-Bragg condition 
[12], in spite of the “quasiperiodic lattice”. Actually of course, there is no me-
chanical breathing strain; the coherence is due to axial contraction owing to the 
peculiar hierarchic optics as will be described below by a new law in physics. 
Secondly, it became obvious that because our unit cells do not repeat periodical-
ly in linear order, we had to sum our quasi-structure not just over the unit cell as 
in crystals; but over the whole quasicrystal (QC) in hierarchic order. The qua-
si-structure factor formula (QSF) allowed an important iterative procedure that 
was necessary for the summation of high orders: the iteration overcame compu-
ting truncation errors. The final result is consistent with experimental diffraction 
data [2] [5]. An example will be given in Figure 1. This shows four peaks in 
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geometric series, offset from the Bragg condition by the metric 0.894. This will 
be elaborated in the next section. 

The outstanding question remained, what is the metric and how does the 
geometric series diffraction occur? It is not consistent with Bragg diffraction; but ra-
ther diametrically opposed by geometric, aperiodic, and anharmonic orders n , and 
multiple spacings d  at any given Bragg condition. The new quasi-Bragg law was 
evident: ( )2 sinm dτ λ θ= ’ ’ , where through multiple simulations, the role of the me-
tric defined all of the lattice parameter a ; the order n m→’ ; the quasi-interplanar 
spacing d ’ ; and quasi-Bragg angle θ ’  (the compliment to the angle of inci-
dence). After completely understanding the metric in this unique diffraction, the 
varieties of data verify both the structure and the diffraction. 

 

 
Figure 1. Quasi structure factors calculated by scanning for five peaks in geometric series 
against the coherence factor sc  [14]. At the Bragg condition, 1sc =  (ordinate axis), 
and there is no diffraction; the diffraction peaks occur at the quasi-Bragg condition when 
the metric 0.894sc = . All peaks in the diffraction pattern of ref. [1] are calculated to oc-
cur at this condition. Geometric series indices are shown level with the tops of corres-
ponding QSF peaks. 

2. Quasi Structure Factor (QSF) Suppresses Diffraction 

The sites of atoms and cell centers in icosahedral clusters are known [2] [13] [14], 
and also sites of higher order p  of supercluster centers, where radii multiply by 

2pτ : 
Unit cell ( ur ):   Mn  ( )0,0,0  

Al  ( ) ( ) ( )1 1 1,0, 1 , 0, 1, , 1, ,0
2 2 2

τ τ τ± ± ± ± ± ±                (1) 

and 

Cell or cluster centers ( ccr ) ( ) ( ) ( )2 2 21 1 1,0, , 0, , , , ,0
2 2 2

τ τ τ τ τ τ± ± ± ± ± ±   (2) 
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The QSF formula is adapted from classical crystallography with two differ-
ences: 

( )( )
all atoms

1
cos 2hkl i s hkl i

i
F f c h r

=

π= ⋅ ⋅∑                  (3) 

firstly, because the diffraction is sharp in spite of multiple interplanar spacings 
d , a coherence factor sc  is inserted. Its value will be derived analytically be-
low. The factor is used as a scanned variable (Figure 1) to illustrate the variance 
of quasi-Bragg diffraction from Bragg diffraction in crystals. 

 

 
Figure 2. Each golden triad has three principal planes on each dimension that intersect 
(red pointers) at normals on the [100] axis in the diagram. Each corner of each golden 
rectangle locates the center of a cell or subcluster. Intercluster spacings are arranged at 
intervals 0, 1, τ , for the unit cell. By scaling the triad for clusters and superclusters, the 
spacings continue 2 3 4, , ,τ τ τ 

 in geometric series, as observed in diffraction indices. 
 

Secondly, because the unit cells are not periodic as in crystals, the summation 
is made over all atoms in the QC; not just the unit cell. The summation is taken 
in two steps: over the unit cell and cluster, and iteratively over the superclusters 
in hierarchic order p . Write the vector from the origin to each atom in a clus-
ter clr  as the sum of a unit cell vector ur , with a vector to the cell centers in 
the cluster ccr : cl cc ur r r= + . Then since: 

( ) ( ) ( )
cluster 12 13

exp exp exp
N

hkl cl hkl cc hkl u
i i i

h r h r h r⋅ = ⋅ × ⋅∑ ∑ ∑          (4) 

with corresponding summations over unit cell sites and cell centers, and know-
ing that cluster cc uN N N= ⋅ , the QSF for the cluster is calculated: 

( )( )
12

cluster cell

1
cos 2hkl s hkl cc hkl

i
F c h r F

=

= π ⋅ ⋅ ⋅∑                (5) 

and repeating iteratively over superclusters by using the known stretching factor 
2pτ : 
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( )( )
all atoms

2 1

1
cos 2p p p

hkl s hkl cc hkl
i

F c h r Fτ −

=

π ⋅ ⋅ ⋅= ∑               (6) 

The example in Figure 1 is for a simple axial series, but all beams in the orig-
inal data [1] display the same metric deviance from the Bragg condition on the 
ordinate axis where 1sc = . In the QCs all beams peak at the quasi-Bragg condi-
tion 0.894sc = . There is no Bragg diffraction. From larger samples, the value of 

sc  is extremely precise [5]. As we shall see, this value is the result of harmoniza-
tion of the incident, sine wave probe with the aperiodic, hierarchic structure. 
Notice that the QSF depends on the angle between a specific atomic plane-normal 
and the crystal structure; it is independent of the experimental Bragg angle. Eli-
mination of the Bragg angle θ  from the equation, allowed access to parameters 

’n , ’d , and hierarchic lattice parameter a . (The value of the QSF depends 
greatly on the number of atoms in the simulated quasicrystal as also partly on 
atomic scattering factors: the number is much larger and more varied than the 
number of atoms in a crystal unit cell). 

3. Stretching the Axis for Bloch 

Bragg diffraction is bi-planar: the path difference between two rays reflected 
from neighboring Bragg planes is equal to the wavelength of light. QC diffrac-
tions multiplanar, as is observed in high resolution electron micrographs: within 
the “quasi-periodic solids” every atom scatters. To know how the phases of the 
various scattered rays add, it is necessary to calculate the QSF. The addition is 
iterative (Equation (6)). Subclusters locate on the corners of the golden rectan-
gles shown in Figure 2, i.e. on principal planes. These planes, in hierarchic dif-
fraction, replace Bragg planes in diffraction from crystals. Keeping the golden 
triad as basis in the hierarchy, the spacings between principal planes scale geo-
metrically owing to the stretching factor 2 pτ  that determines axial dimensions 
with increasing order. 

Interplanar spacings are ordered like the diffraction pattern: 2 3 4 50,1, , , , , ,τ τ τ τ τ   
It is evident that whereas Bragg diffraction occurs by coherent scattering from 
Bragg planes, hierarchic diffraction occurs by coherent scattering from subclus-
ter centers. How, more precisely, this happens will be illustrated with qua-
si-Bloch waves. These waves differ from both the Bloch wave in crystals and 
from the Bragg diffracted wave beam. Bloch waves are evident as lattice images 
in the two-beam condition [19]. The waves are due to interference between an 
incident X-ray or electron beam with its specularly reflected diffraction beam. 
However, because the interplanar spacings are not in linear order in the QC, an 
imagined pseudo-Bragg Bloch wave (blue waves in Figure 3) may be coherent in 
the unit cell but must then be incoherent with the geometric, principal-plane, 
hierarchic lattice that describes the higher order icosahedra. The pseudo interfe-
rence is destructive. To construct interference, the interfering sine wave must be 
stretched by the inverse of the metric. This makes the quasi-Bloch wave com-
mensurate and approximately harmonic with the principal planes. The interfe-
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rence is accompanied by a small (10.6%) change in scattering angle, away from 
the Bragg condition i.e. smaller than would occur in crystals having equivalent 
interplanar spacing. The result is the quasi-Bragg angle θ ’  to be used below in 
the quasi-Bragg law. Before we reach for this conclusion, we must explain the 
origin for the metric that was calculated in the QSFs, and that is critically needed to 
find the function ( ), , , 0sf n d cθ =’ ’ ’  for the quasi-Bragg diffraction. The strong 
explanation is principally numerical, and will be described in the next section. 

Meanwhile, it is obvious in Figure 3, that whereas long range order is evident 
from the diffraction of quasicrystals, it is not true that there is no translational 
symmetry: the quasi-Bloch wave is invariant in all translations maτ . There is 
additional symmetry because the hierarchic model is also centrosymmetric. No-
tice the extraordinary feature: the quasi-Bloch wave symmetry is both long range 
and local at each intercept in Figure 3(b). 

 

 
Figure 3. (a) Red Quasi-Bloch wave invariant under translation maτ  compared with blue pseu-
do-Bragg Bloch wave that is incommensurate with the structure below in d. (b) Geometric series 
that mark locations of principal plane intercepts in the unit cell and cluster as below. (c) Same trac-
es as (a), but translated to demonstrate local and long range invariance of the quasi-Bloch wave, and 
approximate coherence with structure. (d), Atomic planes in the semi-cluster that cross the [100] 
axis, including principal planes: u for the unit cell; c for the cluster. Where the pseudo-Bragg Bloch 
wave is incoherent. 

4. Irrational Metric Function 

Column 7 in Table 1 lists the geometric series, base τ . Corresponding values 
are shown in col.9. They are irrational excepting the first. The exact Fibonacci 
equivalents are shown in cols 2 - 5. They can be rationalized by replacing the ir-
rational number t  by the fraction 3/2. For harmony, the fraction should be  

https://doi.org/10.4236/jmp.2020.114038


A. J. Bourdillon 
 

 
DOI: 10.4236/jmp.2020.114038 587 Journal of Modern Physics 
 

Table 1. The bold type in column 7 shows the geometric series that correctly indexes the observed diffraction pattern. Corres-
ponding irrational values are shown in col. 9 and the common Fibonacci sequence (cols 2 - 5), which sums a rational part and an 
irrational part. By substituting the rational fraction 3/2 for irrational τ in col.5, the rational series in col.10 is derived. QSFs calcu-
lated for this imaginary structure are Bragg-like with 1sc = . This fact confirms the supposition that the metric, calculated in the 
quasi-Bragg QSFs, is due to the irrational part of col.9 (i.e. completely absent in Bragg diffraction). Subtract it from col.9 and 
harmonize the residue by dividing col. 11/col. 12 (corresponding to harmonics in Figure 3). Derive the metric in the final col. 14. 
This value is identical to the metric simulated universally in QSFs. N.B. ( ) ( ) ( )11, 0,1 0,1m

m m mF F Fτ τ τ+= = + ; where 0m > ; ratios 

( ) ( )1 0,1 0,1m mF F+  oscillate about τ; contrasting ( ) ( )1 1, 1,m mF Fτ τ τ+ = , as in the diffraction data.  

   
Fibonacci series 

 
Geometric  

series 
Irrational 

values 
Rational 
Approx. 

Irr.-Rat. 
residue 

Commensurate 
divisor 

Residue/ 
divisor 

Metric 

      
1mτ −        sc  

m  mF  
 1mF +  τ  

    
3 2a b+  

 1/ mF +  3 2τ∆ = −  ( )1 1+ ∆  

              

              

   
0 τ  

 
0τ  = 1 1 0 0 

  
1 0 

 
1 τ  = τ  = 1.618034... 1.5 0.11803 1 0.118034 0.894427 

2 1 + 1 τ  = 2τ  = 2.618034… 2.5 0.11803 1 0.118034 0.894427 

3 1 + 2 τ  = 3τ  = 4.236068… 4 0.23607 2 0.118034 0.894427 

4 2 + 3 τ  = 4τ  = 6.854102 6.5 0.3541 3 0.118034 0.894427 

5 3 + 5 τ  = 5τ  = 11.09017 10.5 0.59017 5 0.118034 0.894427 

6 5 + 8 τ  = 6τ  = 17.944272 17 0.94427 8 0.118034 0.894427 

7 8 + 13 τ  = 7τ  = 29.034443 27.5 1.53444 13 0.118034 0.894427 

8 13 + 21 τ  = 8τ  = 46.978715 44.5 2.47872 21 0.1180341 0.894427 

9 21 + 34 τ  = 9τ  = 76.013159 72 4.01316 34 0.1180341 0.894427 

10 34 + 55 τ  = 10τ  = 122.99188 116.5 6.49188 55 0.1180341 0.894427 

11 55 + 89 τ  = 11τ  = 199.00504 188.5 10.505 89 0.1180341 0.894427 

12 89 + 144 τ  = 12τ  = 321.99691 305 16.9969 144 0.1180341 0.894427 

 
integral or half integral. QSF calculations show it is half integral. The rational 
approximation to the geometric series indices is listed in col. 10. Calculation of 
the QSFs for this imaginary series is Bragg-like with 1sc = . This demonstrates 
the fact that the metric is an expression of the irrational part of the geometric 
sequence in col. 7. To derive the metric, subtract the rational part from the irrational 
sequence (col. 7 - col. 10) to give the residue in column 11. Notice that this is a 
growing number down the sequence, and that it can be harmonized by the integers 

( )1 0,1mF +  in col. 12, i.e. the Fibonacci sequence 1 0,1,1, 2,3,5,mF + =  , with the 
argument representing the first two terms. The re-normalization corresponds to 
the increasing number of periods between intercepts illustrated in Figure 3. 
Division of the irrational residue by this sequential harmonization leaves the 
constant, irrational number. When this is represented as an increment on the 

1sc =  at the Bragg condition, and then inverted, we derive, from the irrational 
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indices, the analytic metric which is exactly the same as was discovered, by the 
perfectly independent numerical method of QSF simulations on the QC. The 
exact and identical values make the probability for error infinitesimally small 
and practically impossible. 

The result is summarized in Figure 4. The “metric function” is the inverse of 
the metric and is equal to: 

 

 
Figure 4. The metric function is derived by subtraction of the rational part from the irra-
tional index ( ) 2 31, 1, , , ,mF τ τ τ τ= 

 (see Table 1). After division by a commensurating 

harmonic number, ( )1 0,1 0,1,1,2,3,5,8,11,mF + =  , (also Fibonacci, see Figure 3), the 
metric expresses computational “breathing” of the QC axes that are necessary for cohe-
rence. This condition was obtained by scanning sc  to find the maximum QSF. The me-
tric function is the inverse of the metric that is simulated universally in QSFs. The first six 
terms are evaluated as examples. The wave expands when the metric contracts the axes. 

 

4

1

21 11
0.894

m
m

s m

F
c F

τ +

+

−
= + =                    (7) 

To illustrate, the first six terms are shown in the figure: the metric is exactly 
derived from the irrational part of the index, the part that is completely absent in 
the Bragg formula. 

The metric may be derived in several ways, one is as follows: An index mτ  is 
separated into rational and irrational parts while τ  is separated into the ra-
tional semi-integral 3/2 and an irrational residue 3 2τ∆ = −  (Table 1): 

1

1 1 1

2 1 1

4 1

2
2

2  

m
m m

m m m m

m m m

m m

F F
F F F F
F F F
F F

τ τ+

+ + +

+ + +

+ +

= + ⋅

= + + + ⋅∆

= + + ⋅∆

= + ⋅∆

                 (8) 

Since, by general properties of the Fibonacci sequence: 

4 3 2

2 1 2

2 1

2 2 2
2 2 2

2

m m m

m m m

m m

F F F
F F F
F F

+ + +

+ + +

+ +

= +

= + +

= +

                 (9) 
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Equation (8) is thereby systematically confirmed from Table 1 and Figure 4, 
and rearranged: 

4

1

2m
m

m

F
F

τ +

+

−
∆ =                        (10) 

So that the metric function: 

1 11
0.894sc

= + ∆ =                       (11) 

in complete agreement with the QSF simulations where 1 1.1180sc = , and 
3 2 0.1180τ∆ = − = . This irrational part (Table 1, col. 11), can be written  

( )1 1, 3 2mF τ+ − ∆ , consistent with Equation (8). 
The metric can be derived in further ways: notice, for example, that if τ  is 

supposed to vary, then 1sc →  as 0τ → , i.e. at the Bragg condition. Generally 
however, the metric commensurates and harmonizes the diffracted sine wave 
onto a geometric grid [2] [14], as is simulated in the QSFs. 

A summary of the structural result is shown in Figure 5. Notice, in particular, 
that the lattice parameter for the QC that was measured a long time ago on an 
assumption of Bragg diffraction [20] [21], is now corrected for the metric and 
index under the quasi-Bragg law: 0.205 nmsa cτ= ⋅ ⋅ . Within errors, a  is 
equal to both the known diameter of Al and to the edge width of the unit cell 
(Figure 6). To understand this, consider the edge of the unit cell. Twelve Al 
atoms are closely packed around the central Mn atom. The edge width of the 
unit cell is the sum of the radii of two Al atoms [5] [14] [15]. The experimental 
value of a is a necessary consistency test for any model that has been proposed, 
and the test is only possible with a systematic and complete theory of the unique 
diffraction. There is a further fact beyond the strong evidence from imaging and  

 

 
Figure 5. Comparison of Bragg parameters in crystals with quasi-Bragg parameters in 
quasicrystals. Notice especially the corrections (col. 2, row 5) to the lattice parameter a , 
derived from the earlier, false assumption of Bragg diffraction. 
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Figure 6. Cross-section of icosahedral unit cell showing central Mn atom touching outer 
Al atoms centered on corners of the golden rectangle. The measured lattice parameter, 

0.296 nma = , equals the width of the golden rectangle and the diameter of Al. The dense 
unit cell has 15 identical cross-sections between the 30 edges on the Platonic solid. 
Alongside the imaging of hierarchies and theory of diffraction, the measurement verifies 
the structure. 

 
diffraction, namely that all diatomic, icosahedral QCs have atomic diameter ra-
tios: ( )1 22

solute solvent 1 1D D τ= + − , as indeed do Mn AlD D  in the figure. The fact 
is consistent with high local density as the structural driving force. 

The true measurement of the lattice parameter, with the correction given by 
the metric and index under the quasi-Bragg law (Figure 5), verifies the structure 
and diffraction of the QC. 

5. Welcome Hierarchic Physics 

The quasicrystal has inter-related icosahedral symmetry with diffraction in geo-
metric series: an incident X-ray or electron beam scatters off the hierarchic lat-
tice into geometric space. The metric, that is measured and experimentally veri-
fied, is now completely understood. This is unique and novel in QCs. Quasi-
crystallographers have, for 38 years refused to accept this fact, though some, like 
Senechal have acknowledged shortcomings. For example, a sub-editor of Acta 
Crystallographica wrote that you don’t measure the lattice parameter, “You just 
have to choose ‘ hd ’”, the interplanar spacing [[5] p. 82]. This is a category error: 
mathematicians choose their axioms; physicists falsify them [22] [23]. He went 
on to write, “Bragg’s equation cannot be applied if we do not know how to han-
dle the term hd ”. He doesn’t “know” since he “chooses” a  in  

( )2, ,hkld a m h k l= ⋅  falsely and inaccurately (without metric); while Bragg’s 
law never applies. His is first rank, mainstream, quasi-physics. As we have 
shown, the dimensions that mathematicians invent are multiplied without ne-
cessity; it is ironic that the metric function supplies the new dimensionality 
that they sought. Whatever, they do not review papers objectively when their 
own writings and readings are made irrelevant. The formal and informal logic 
that has guided science for two millenia are observed by neglect, and this is 
evident in published reviews. Other mathematical theories are equally quasi 
[23] [24], as Feynman famously observed, “No one understands quantum me-
chanics”. But obviously, whatever is not understood is not physics. 
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6. Conclusion 

The quasi-Bragg law is a new law in physics. Now that the structure and diffrac-
tion are clear for anybody to see and understand, we should turn our attention 
to outlying problems. These include quasicrystalloids in which planar five-fold, 
six-fold and eight-fold quasicrystal symmetries link to regular linear symmetries 
on planar normals. The icosahedral unit cell may share edges in various ways, 
and metrics are likely dependent on them individually. Another class of prob-
lems is defects, especially in rapidly quenched material. Some anomalous micro-
structures have been recorded, by convergent beam diffraction for example [21], 
so these, along with grain boundaries [14], might give important information 
about hierarchic crystal growth. Supposing that the dense unit cell nucleates in 
the melt before solidification, it is not obvious how clusters, superclusters and 
higher orders grow and agglomerate during solidification. It may become neces-
sary to discover methods that can be used on samples that are more bulky than 
thin foils observed in typical transmission electron microscopy. Hierarchic crys-
tals present ever more interesting phenomena, where mature and complete un-
derstanding now graduates them as a new field in physics. 
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