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Abstract 
In this article, we examine the solution of the fuzzy linear vertical infiltration 
equation, which represents the water movement in porous media in that part 
which is called the vadose zone. This zone is very important for semi-arid 
areas, due to complex phenomena related to the moisture content in it. These 
phenomena concern the interchange of moisture content between the vadose 
zone and the atmosphere, groundwater and vegetation, transfer of moisture 
and vapor and retention of moisture. The equation describing the problem is 
a partial differential parabolic equation of second order. The calculation of 
water flow in the unsaturated zone requires the knowledge of the initial and 
boundary conditions as well as the various soil parameters. But these para-
meters are subject to different kinds of uncertainty due to human and ma-
chine imprecision. For that reason, fuzzy set theory was used here for facing 
imprecision or vagueness. As the problem concerns fuzzy differential equa-
tions, the generalized Hukuhara (gH) derivative was used for total deriva-
tives, as well as the extension of this theory for partial derivatives. The results 
are the fuzzy moisture content, the fuzzy cumulative infiltration and the fuzzy 
infiltration rate versus time. These results allow researchers and engineers 
involved in Irrigation and Drainage Engineering to take into account the un-
certainties involved in infiltration. 
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1. Introduction 

Vertical infiltration is a common physical phenomenon of water movement in 
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porous media which is of great interest in many earth and plant sciences. Vertic-
al soil-water flow plays an important role in understanding the phenomena of 
runoff, groundwater recharge, and transport of contaminants. Especially in the 
vadose zone, the soil moisture strongly influences the plants’ growing process. 
Historically, Buckingham [1] presented two basic ideas in the development of 
soil water movement concerning the vadose zone: the capillary potential and the 
capillary conductivity. Later, Gardner and Widsoe [2] and Richards [3] intro-
duced the diffusion phenomenon in the concept of soil-water movement, which 
was completed later by Childs [4] [5]. The equation of flow arising from Darcy’s 
or Darcy-Buckingham equation and the law of conservation of mass is, after 
Klute [6]: 

( )K
t
θ∂
= ∇ ⋅ ∇Φ

∂
                        (1) 

where θ = the moisture content (cm3/cm3), K = the unsaturated hydraulic con-
ductivity (cm/s) and Φ = the total potential (cm): 

zΦ = Ψ −                           (2) 

In Equation (2), Ψ = the pressure potential or capillary potential (cm) and z = 
the gravitational component (cm) and we adopt that z is taken positive down-
ward. Introducing Equation (2) in (1) provides: 

( ) KK
t z
θ∂ ∂
= ∇ ⋅ ∇Ψ −

∂ ∂
                      (3) 

By introducing the diffusivity D (cm2/s): 

,D K
θ

∂Ψ
=

∂
                          (4) 

Equation (3) becomes: 

( ) KD
t z
θ θ∂ ∂
= ∇ ⋅ ∇ −

∂ ∂
                      (5) 

and in the vertical dimension z: 

.KD
t z z z
θ θ∂ ∂ ∂ ∂ = − ∂ ∂ ∂ ∂ 

                     (6) 

The initial and boundary conditions are: 

( ) ( ) ( )
0 1 00 0

, 0

,
, , , , .

t x
z t

z t
z t z t

z
θ

θ θ θ θ θ
= =

→∞ >

∂
= = =

∂
         (7) 

For 1 0θ θ> , Equation (6) with initial and boundaries conditions (7) describes 
the vertical infiltration of water if a constant moisture content at z = 0 is applied, 
as initially described by Philip [7]. 

Analytical solutions of the one-dimensional Equation (6) are available under 
several simplifications. Philip [7] has obtained a semi-analytical solution of Equ-
ation (6) by introducing a Boltzman transformation. His solution was presented as 
a power series in t1/2. Parlange [8] transformed Equation (6) and considered the  
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first integral dS z
t

θ

θ
θ∂

∂∫  of the transformed equation negligible compared to the  

other terms. Subsequently, he developed an iterative method to solve the re-
mainder equation. Philip [9] has introduced a linearization technique for the 
solution of the above non-linear infiltration problem. He explained that the so-
lutions of the linearized equation do not give accurate detailed description of the 
phenomenon. However, the linear equation yields useful estimates of integral 
properties of cumulative infiltration I and infiltration rate v0. In general, exact 
nonlinear solutions are derived for specific forms of the soil-water relationship 
[10] [11] [12] [13] [14]. Richards’s equation is also linearized by considering 
exponential form of the hydraulic conductivity and the moisture content vs. the 
pressure head [14] [15]. Approximate solutions are also derived using the form 
of Brooks and Corey of hydraulic conductivity and the moisture content vs. the 
pressure head and considering a rectangular profile of moisture content [16] 
[17] [18]. Su et al. [19], solved the equation of Richards, using a new method 
based on the Principle of Least Action and the Variational Principle. 

The numerical methods—finite difference and finite element—presented in 
[20]-[33] overcome most of the limitations to result to analytical solutions. 

The calculation of water flow in the unsaturated zone requires the knowledge 
of the initial and boundary conditions as well as of the various soil parameters. 
Until today, these conditions and parameters were assumed well-defined, and 
this assumption is based principally in measurements. But they are subject to 
different kinds of uncertainty, due to human and machine imprecision. In many 
cases the uncertainties were considered in statistical terms as random variables 
with given mean values, variances and correlations. But these methods require 
the exact knowledge of mean values, variances and correlations, and often suffer 
from insufficient amount of accurate measurement data. For example, the accu-
racy of the linear distance between two points depends upon the precision of the 
location of the reference points. The precision rarely being perfect, dimensional 
limits would be imposed, often of the bilinear type ( )0 0,i ix a x b− − . This bili-
near type set was assumed random and the probability theory was accepted va-
lid. But randomness is an ideal tool only where a sufficiently long series of inde-
pendent random experiments is available. In the cases where we have a small set 
of measurements, fuzzy set theory is ideal for formalizing incomplete informa-
tion expressed in terms of fuzzy propositions with inherent vagueness. The same 
principle could clearly be extended to other applications, including non-geometric 
cases, such as chemical composition, machine registrations etc. 

Today the fuzzy set theory provides methods for introducing imprecise in-
formation in a possibilistic sense. Zadeh [34] initially introduced the fuzzy set 
theory for facing imprecision or vagueness and since then this theory has been 
applied in various fields of science. In the present work, the solution of a linear 
one-dimensional vertical infiltration equation with fuzzy initial and boundary 
conditions is presented. This equation is a parabolic partial differential equation, 
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describing the vertical water movement in a porous medium. The problem of 
fuzzy differential equations is related to mathematical modelling and engineer-
ing applications. Initially differentiable fuzzy functions were studied by Puri and 
Ralescu [35], who generalized and extended the concept of Hukuhara differen-
tiability of set valued mappings to the class of fuzzy mappings (H-derivative, 
Hukuhara, [36]). Also, Kaleva [37] and Seikkala [38] developed a theory for 
fuzzy differential equations. Many related works have been carried out in theo-
retical and applied topics for fuzzy differential equations with H-derivative [37] 
[38] [39] [40]. But in some cases, this method suffers certain disadvantages that 
lead to solutions with increasing support as time t increases [41] [42]. This 
proves that in some cases the H-derivative solution is not a good generalization 
of the corresponding crisp case. Bede and Gal [43] mention: “This approach has 
the disadvantage that it leads to solutions with increasing support, fact which is 
solved by interpreting a fuzzy differential equation as a system of differential in-
clusions. But this last-mentioned approach has at its turn some shortcomings. 
The main shortcoming is that one cannot talk about the derivative of a 
fuzzy-number-valued function, since a fuzzy differential equation is directly in-
terpreted with the help of differential inclusions without having a derivative”. In 
order to overcome the above deficiency, the generalized Hukuhara differentiability 
(gH-differentiability) was introduced by Bede and Gal [44] and Stefanini and Bede 
[45]. In that case, the solution exists under much less restrictive conditions, but it 
does not always exist. Recently the general differentiability (g-differentiability) 
concept is proposed, which further extends the gH-differentiability (Bede and 
Stefanini [46], Stefanini and Bede [47]). This new derivative is defined for a 
larger class of fuzzy functions than the Hukuhara derivative. Allahviranloo et al. 
[48] introduced the (gH-p) differentiability for partial derivatives as an exten-
sion of the above theory. 

In this paper, as is stated above, the case of linear vertical infiltration is stu-
died, with imprecise boundaries conditions. The diffusivity is considered con-
stant and the crisp problem is solved using the Laplace transform. For the fuzzy 
solution, the crisp solution is introduced first and then the problem is fuzzified. 
Then the problem is solved according to the theories presented in [49] [50], and 
a fuzzy solution is presented. Consequently, the first derivatives with respect to t 
and z, as well as the second derivative with respect to z of the problem are ex-
amined. The article is organized as follows: in the Materials and Methods sec-
tion, the physical problem is presented, and the Fuzzy model is applied to it. The 
mathematical model is formulated, using certain characteristics with fuzzy de-
rivatives, and it is analyzed in its fuzzy form. In the Results and Discussion sec-
tion, the model is applied in sample soil data, resulting to the fuzzy moisture, the 
fuzzy cumulative infiltration as well as the fuzzy infiltration rate versus time. The 
significance and the main advantage of this study, is the introduction of fuzzy 
logic to solve the problem of vertical infiltration, which is a problem involving 
partial differential equations and it presents uncertainties in its input variables. 
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2. Materials and Methods 
2.1. The Physical Problem of One-Dimensional  

Linear Vertical Infiltration in Its Crisp Form 

Equation (6) mentioned in the introduction, is called infiltration equation by 
Philip [51], because it describes the vertical water flow in a porous medium. For 

1 0θ θ> , the above equation with initial and boundary conditions provided by 
Equation (7), describes the vertical infiltration of water by applying a constant 
moisture content at z = 0. 

In the above equation, Philip [9] has estimated the diffusivity as follows: 

( )

2

* 24 S r

SD
θ θ
π

=
−

,                       (8) 

where S is the sorptivity [LT-1/2]. The linearized form of Equation (6) thus be-
comes: 

2

* 2

KD
t zz
θ θ∂ ∂ ∂
= −

∂ ∂∂
,                      (9) 

with the same initial and boundary conditions: 

( ) ( ) ( )
0 0

, 0

,
, ,, ,r S rt x

x t

x t
x t x t

z
θ

θ θ θ θ θ
= =

→∞ >

∂
= = =

∂
        (10) 

By writing the term K z∂ ∂  in the following form: 

d
d

K K k
z z z

θ θ
θ

∂ ∂ ∂
= =

∂ ∂ ∂
,                     (11) 

he has considered that k is constant by matching linear and non-linear values of 
infiltration rate ( 0lim

t
v

→∞
) and has obtained the value: 

.S r

S r

K K
k

θ θ
−

=
−

                        (12) 

In Equation (12), Ks = the hydraulic conductivity at saturation, Kr = the resi-
dual hydraulic conductivity, θs = the moisture content at saturation, and θr = the 
residual moisture content. He now poses in Equation (9): 

0, , d dr S rθ θ θ θ θΘ = − Θ = − Θ =                 (13) 

and Equation (9) becomes: 
2

* 2D k
t xx

∂Θ ∂ Θ ∂Θ
= −

∂ ∂∂
                     (14) 

with initial and boundaries conditions: 

( ) ( ) ( )
0

0 0, 0

,
, 0, , , 0

t x t x

x t
x t x t

x= = > →∞

∂Θ
Θ = Θ = Θ =

∂
            (15) 

The solution of this equation is ([50]): 

*

0 * *

1 erfc e erfc .
2 2 2

kx
Dx kt x kt

D t D t

    Θ − + = +       Θ      
            (16) 
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The cumulative infiltration is: 
2 2

2

1 1exp erf erfc ,
2 2

S S S
S S

S

K t K KS t tI K t S t K t
K S SS

     
= + − + −                π 

π
ππ

  (17) 

while the infiltration rate is: 

2

0 2exp erfc
2

S S S
S

S

K K t K tSv K
SK t S

  
   π π   

 
= − − + 

 
.         (18) 

2.2. Generalities of the Fuzzy Model 

Note: In order to facilitate the readers non-familiar with the fuzzy theory, we 
describe here some definitions concerning preliminaries of fuzzy theory and 
some definitions about the differentiability. 

2.2.1. Definition 1. Membership Function 
A fuzzy set U  on a universe set X is a mapping [ ]: 0,1U X → , assigning to 
each element x X∈  a degree of membership ( )0 1U x≤ ≤ . The membership 
function is also defined as ( )U xµ



 with the properties: 
1) Uµ 

 is upper semi continuous, 2) ( ) 0U xµ =


, outside of some interval 

[ ],c d , 3) there are real numbers c a b d≤ ≤ ≤ , such that Uµ 

 is increasing on 

[ ],c a , decreasing on [ ],b d  and ( ) 1U xµ =


 for each [ ],x a b∈ , 4) U  is a 

convex fuzzy set (i.e. ( )( ) ( ) ( )( ){ }1 min , 1U U Ux x x xµ λ λ µ λ µ λ+ − ≥ −
  

. 

2.2.2. Definition 2. Closure 
Let X be a Banach space and U  be a fuzzy set on X. We define the a-cuts of U  

as ( ){ } ( ], 0,1U x R U x
α

α α  = ∈ ≥ ∈ 
  , and for 0α = , we define the closure 

( ){ }0
0U x R U x  = ∈ > 

  . 

2.2.3. Definition 3. Space of All Compact and Convex Sets 
Let Ҡ(X) the family of all nonempty compact convex subsets of a Banach space. 
A fuzzy set U  on X is called compact if U

α
  ∈ 
  Ҡ(X), [ ]0,1α∀ ∈ . The space 

of all compact and convex fuzzy sets on X is denoted as Ƒ(X). 

2.2.4. Definition 4. α-Cut Forms 
Let RFU  ∈ 

 . The α-cuts of U , are: ,U U U
α

α α
− +   =   

 . According to repre-
sentation theorem of Negoita and Ralescu [39] and the theorem of Goetschel 
and Voxman [52], the membership function and the α-cut form of a fuzzy 
number U , are equivalent and in particular the α-cuts ,U U U

α

α α
− +   =   

  un-
iquely represent U , provided that the two functions are monotonic (Uα

−  in-
creasing, Uα

+  decreasing) and 1 1U U− +≤  for 1α = . 

2.2.5. Definition 5. gH-Differentiability (Bede and Stefanini, [46]) 
Let [ ]: , RFU a b → , be such that ( ) ( ) ( ),U x U x U xα αα

− +   =   
 . Suppose that the 

functions ( )U xα
− , ( )U xα

+  are real-valued functions, differentiable with respect 
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to x, uniform with respect to [ ]0,1α ∈ . Then the function ( )U x  is 
gH-differentiable at a fixed [ ],x a b∈  if and only if one of the following two 
cases holds: 

1) ( ) ( )U xα
− ′  is increasing, ( ) ( )U xα

+ ′  is decreasing as functions of α, and 

( ) ( ) ( ) ( )1 1U x U x− +′ ′≤ , or 2) ( ) ( )U xα
+ ′  is increasing, ( ) ( )U xα

− ′
 is decreasing as 

functions of α, and ( ) ( ) ( ) ( )1 1U x U x+ −′ ′≤ . 

Note: ( ) ( ) ( ) ( ) ( ) ( )
,

U x U x
U x U x

x x
α α

α α

− +
− +∂ ∂′ ′= =

∂ ∂
. In both cases above, the 

( )U xα′  derivative is a fuzzy number. 

2.2.6. Definition 6. gH-Differentiability at x0 
Let [ ]: , RFU a b →  and [ ]0 ,x a b∈  with ( )U xα

− , ( )U xα
+  both differentiable 

at x0. We say that (Bede and Stefanini, [46]): 
• U  is (i)-gH-differentiable at x0 if (i)  

( ) ( ) ( ) ( ) ( ) [ ]0 0 0, , 0,1gHU x U x U xα αα
α− + ′ ′′  = ∀ ∈    

 

• U  is (ii)-gH-differentiable at x0 if (ii)  

( ) ( ) ( ) ( ) ( ) [ ]0 0 0, , 0,1gHU x U x U xα αα
α+ − ′ ′′  = ∀ ∈    

 

2.2.7. Definition 7. g-Differentiability 
Let [ ]: , RFU a b →  be such that ( ) ( ) ( ),U x U x U xα αα

− +   =   
 . If ( )U xα

−  and 
( )U xα

+  are differentiable real-valued functions with respect to x, uniform for 
[ ]0,1α ∈ , then ( )U xα

  is g-differentiable and we have [46]: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )inf min , ,sup max ,gU x U x U x U x U xα α α αα β α β α

− + − +

≥ ≥

    ′ ′ ′ ′′  =           
, 

2.2.8. Definition 8. Implication of g-Differentiability 
The gH-differentiability implies g-differentiability, but the inverse is not true. 

2.2.9. Definition 9. [gH-p] Differentiability 
A fuzzy-valued function U  of two variables is a rule that assigns to each or-
dered pair of real numbers (x, t) in a set D, a unique fuzzy number denoted by 
( ),U x t . Let ( ), : D RFU x t → , ( )0 0, Dx t ∈  and ( ),U x tα

− , ( ),U x tα
+  are real 

valued functions and partial differentiable with respect to x. We say that (Khas-
tan et al. [49], Allahviranloo et al. [48], Mondal and Roy [53]): 

( ),U x t  is [(i)-p]-differentiable w.r.t. x at (x0, t0) if: 

( ) ( ) ( )0 0 0 0 0 0

.

, , ,
,

i gH

U x t U x t U x t
x x x

α α α
− + ∂ ∂ ∂

=  ∂ ∂ ∂ 



 
( ),U x t  is [(ii)-p]-differentiable w.r.t. x at (x0, t0) if: 

( ) ( ) ( )0 0 0 0 0 0

.

, , ,
,

ii gH

U x t U x t U x t
x x x
α α α

+ − ∂ ∂ ∂
=  ∂ ∂ ∂ 
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2.2.10. Definition 10 

Let ( ), : D RFU x t → , and 
( )0 0

.

,

i gH

U x t
x

α∂

∂



 be [gH-p]-differentiable at ( )0 0, Dx t ∈  

with respect to x. We say that [48] [49]: 
( )0 0

.

,

i gH

U x t
x

α∂

∂



 is [(i)-p]-differentiable w.r.t. x if: 

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2
0 0 0 0

2 22
0 0

2 2 2
. 0 0 0 0

2 2

, ,
, if , is i -p differentiable

,

, ,
, if , is ii -p differentiablei gH

U x t U x t
U x t

x xU x t
x U x t U x t

U x t
x x

α α

α

α α

− +

+ −

 ∂ ∂
    ∂ ∂∂  = ∂  ∂ ∂      ∂ ∂ 







 
( )0 0

.

,

i gH

U x t
x

α∂

∂



 is [(ii)-p]-differentiable w.r.t.x if: 

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2
0 0 0 0

2 22
0 0

2 2 2
. 0 0 0 0

2 2

, ,
, if , is i -p differentiable

,

, ,
, if , is ii -p differentiablei gH

U x t U x t
U x t

x xU x t
x U x t U x t

U x t
x x

α α

α

α α

+ −

− +

 ∂ ∂
    ∂ ∂∂  = ∂  ∂ ∂      ∂ ∂ 







 

3. Application of the Fuzzy Model to Vertical Infiltration 
3.1. Formulation 

We write Equation (14), in its fuzzy form as follows: 
2

* 2 ,D k
t zz

∂Θ ∂ Θ ∂Θ
= −

∂ ∂∂

  

                     (19) 

with the new initial and boundary conditions: 

( ) ( ) ( ) ( )0 0
0 0

, 0, , 1 , 1 , for 0,
t z

z t z t A r r r r t
α α

α α
= =

   Θ = Θ = Θ = Θ − + + − >     
   

 
where 

( ) ( )1 , 1A r r r r
α

α α  = − + + −   
  and ( ),

0
z

z t
z

→∞

∂Θ
=

∂



 .      (20) 

We can find solutions to the fuzzy problem (Equation (19)) and the initial and 
boundary conditions (Equation (20)), utilizing the theory developed in [46] [48] 
[54] [55], by translating the above fuzzy problem to a system of second order of 
crisp boundary value problems, hereafter called corresponding system of the 
fuzzy problem. Therefore, eight crisp BVPs systems are possible for the fuzzy 
problem {(1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (2,4)}. 

(1,1) System    (1,2) System 
2 2

* *2 2D k D k
t z z t z z

− − − − − +∂Θ ∂ Θ ∂Θ ∂Θ ∂ Θ ∂Θ
= − = −

∂ ∂ ∂ ∂ ∂ ∂  
2 2

* *2 2D k D k
t z z t x x

+ + + + + −∂Θ ∂ Θ ∂Θ ∂Θ ∂ Θ ∂Θ
= − = −

∂ ∂ ∂ ∂ ∂ ∂  
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(1,3) System    (1,4) System 
2 2

* *2 2D k D k
t z z t z z

− + + − + −∂Θ ∂ Θ ∂Θ ∂Θ ∂ Θ ∂Θ
= − = −

∂ ∂ ∂ ∂ ∂ ∂  
2 2

* *2 2D k D k
t z z t x x

+ − − + − +∂Θ ∂ Θ ∂Θ ∂Θ ∂ Θ ∂Θ
= − = −

∂ ∂ ∂ ∂ ∂ ∂  
(2,1) System     (2,2) System 

2 2

* *2 2D k D k
t z z t z z

+ + + + + −∂Θ ∂ Θ ∂Θ ∂Θ ∂ Θ ∂Θ
= − = −

∂ ∂ ∂ ∂ ∂ ∂  
2 2

* *2 2D k D k
t z z t x x

− − − − − +∂Θ ∂ Θ ∂Θ ∂Θ ∂ Θ ∂Θ
= − = −

∂ ∂ ∂ ∂ ∂ ∂  
(2,3) System     (2,4) System 

2 2

* *2 2D k D k
t z z t z z

+ − − + − +∂Θ ∂ Θ ∂Θ ∂Θ ∂ Θ ∂Θ
= − = −

∂ ∂ ∂ ∂ ∂ ∂  
2 2

* *2 2D k D k
t z z t x x

− + + − + −∂Θ ∂ Θ ∂Θ ∂Θ ∂ Θ ∂Θ
= − = −

∂ ∂ ∂ ∂ ∂ ∂  
We will hereby restrict ourselves to the solution of the (1,1) system, which is 

described in detail. 
(1,1) system 

( )

( ) ( ) ( )

2

* 2

0

, ,0 0,

,
0, 1 1 , 0

D k x
t zz

t
t r

z
α

− − −
−

−
−

∂Θ ∂ Θ ∂Θ
= − Θ =

∂ ∂∂
∂Θ ∞

Θ = Θ − − =   ∂

            (21) 

( )

( ) ( ) ( )

2

* 2

0

, ,0 0,

,
0, 1 1 , 0

D k x
t zz

t
t r

z
α

+ + +
+

+
+

∂Θ ∂ Θ ∂Θ
= − Θ =

∂ ∂∂
∂Θ ∞

Θ = Θ + − =   ∂

            (22) 

In Figure 1 the membership function of ( ) ( )0, 0tΘ Θ  is shown, in which 
 

 
Figure 1. Membership function of ( )0,tΘ . 
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the spread r is equal to 0.15. 

3.1.1. Solution of the (1,1) System 
1st case 

2

* 2D k
t zz

− − −∂Θ ∂ Θ ∂Θ
= −

∂ ∂∂
                    (23) 

Boundary conditions 

( ) ( )( ) ( )
00

, 0

,
0, 1 1 , 0,

t
z t

z t
t r

z
α

−
−

>
→∞ ≥

∂Θ
Θ = Θ − − =

∂
        (24) 

Initial condition 

( ),0 0, 0.z z−Θ = ≥                       (25) 

By setting F −= Θ  in Equation (22), we take the following Laplace transfor-
mation: 

2 2

* *2 2

d d 0
dd

F F F F FL D k D k sF
z t zz z

 ∂ ∂ ∂
− − = − − = 

∂ ∂∂ 
,         (26) 

with boundary conditions: 

( ) ( ) ( )0 1
1

d ,
0, , 1 1 , 0.

d
z

F z sk
F s k r

s z
α

→∞

Θ
= = − − =          (27) 

The solution of Equation (26) becomes: 

( ) ( )

( )

2

* *

2

* **

, exp
2 4

exp
2 4

kz z kF z s A s s
D DD

kz z kB s s
D DD

 
 = − +
 
 
 
 + + +
 
 

            (28) 

The first derivative w.r.t. z is: 

( ) ( ) ( )

( ) ( )

2

1
* **

2

2
* **

d ,
exp

d 2 4

exp
2 4

F x s kz z kA s f s s
z D DD

kz z kB s f s s
D DD

 
 = − +
 
 
 
 + + +
 
 

        (29) 

The variable B(s) should be equal to 0, in order to satisfy the boundary condi-
tion (Equation (27)): 

( )d ,
0.

d
z

F z s
z

→∞

=
 

So, Equation (28) becomes: 

( ) ( )
2

* **

, exp .
2 4
kz z kF z s A s s
D DD

 
 = − +
 
 

            (30) 

For the first condition for z = 0, we have: 
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( ) ( ) ( )0 1 0 10, , 0,
k k

F s F s A s
s s

Θ Θ
= = =               (31) 

and Equation (30) becomes: 

( )
2

0 1

* **

2

0 1

, exp
2 4

1exp exp
2 4

k kz z kF z s s
s D DD

ux x uk s
D s DD

 Θ
 = − +
 
 

    = Θ − +      

          (32) 

Applying now the inverse Laplace transform [56] to Equation (32) we obtain 
the following equation: 

*0 1

* *

erfc e erfc
2 2 2

kz
Dk z kt z ktF

D t D t
−

    Θ − +
 = Θ = +           

.         (33) 

2nd case 
2

* 2D k
t zz

+ + +∂Θ ∂ Θ ∂Θ
= −

∂ ∂∂
                    (34) 

Boundary conditions 

( ) ( )( ) ( )
0

, 0

,
0, 1 1 0, 0,

z t

z t
t r t

z
α

+
+

→∞ ≥

∂Θ
Θ = Θ + − > =

∂
       (35) 

Initial condition 

( )
0

,0 0.
z

z+

≥
Θ =

 
In Equation (34) we set G += Θ  and we take the following Laplace transfor-

mation: 
2 2

* *2 2

d d 0
dd

G G G G GL D k D k sG
z t zz z

 ∂ ∂ ∂
− − = − − = 

∂ ∂∂ 
,        (36) 

with boundary conditions: 

( ) ( ) ( )0 2
2

d ,
0, , 1 1 0,

d
z

G z sk
G s k r

s z
α

→∞

Θ
= = + − =          (37) 

Applying the same process as in case 1, we have: 

*0 2

* *

erfc e erfc
2 2 2

kz
Dk z kt z ktG

D t D t
+

    Θ − +
 = Θ = +           

         (38) 

Finally, the fuzzy solution is: 

( )

( )

*

*

0 0

* *

* *

erfc e erfc , ,
2 22 2

, erfc e erfc .
2 2

kz
D

kz
D

A Az kt z kt T z t
D t D t

z kt z ktT z t
D t D t

    Θ Θ− +
 Θ = + =           

   − +
= +      

   

 



     (39) 

In Equation (39) the fuzzy number A  is as follows: 

( ) ( )1 1 ,1 1A r r
α

α α  = − − + −   
 .               (40) 
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Existence statement of Equations ((21), (22)) 
Initial condition 
Equation (39) satisfies the initial condition: 

( ) ( )0
00

, , 0,
2 tt

Az t T z t
==

Θ
Θ = =





 
due to: 

( ) ( ) ( )*
0

, erfc e erfc 0
kz
D

t
T z t

=
= ∞ + ∞ =

 
Boundary conditions 

he first boundary condition is: 

( ) ( )0
000

, , ,
2 zz

Az t T z t A
==

Θ
Θ = = Θ



 

 
because it is: 

( )
0

* *

, erfc erfc 2.
2 2t

kt ktT z t
D t D t=

   −
= + =      

     
The second boundary condition is: 

( )

*

*

2

0

** * *

0

* *

*0

*

, 2lim exp e erfc
2 2 2

lim e erfc
2 2

erfc
2

lim
2

e

kz
D

z
z

kz
D

z

kzz
D

z t A z kt k z kt
z DD t D t D t

A k z kt
D D t

z kt
D tA k

D

→∞
→∞

→∞

→∞ −

  ∂Θ Θ − + = − − +    ∂   
  Θ +
 =      
  +
  

      π  

  Θ  = = 
 
 






 








0

*

0 .
2 0

A k
D

Θ 

 

We apply now the “L’Hospital Rule” 

( )

( )

*

*0

*
*

2

*
0

*

*

2
0

* *

erfc
2,

lim
2

e

2 exp
2

lim
2

e

2lim exp
2 4

z kz
z

D

kzz
D

z

z kt
D tz t A k

z D

z kt
D tA k

D k
D

z ktA kz
D t D

→∞
−→∞

→∞ −

→∞

 ′  +      ∂Θ Θ    =  ∂ ′  
      

   +  −     Θ   =  
 −
  
 

 +Θ
= − +


π

π 








( )2
0

*

2lim exp 0.
2 4z

z ktA
D t→∞




 −Θ
 = − =
 
 π
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Thus, it is proven that the initial and boundary conditions of Equations ((23) 
and (34)) are satisfied. 

Fuzzy derivatives 
First Derivative of Θ  versus z: 

( )

2

0

** * *

0
1

2 exp e erfc
2 2 2

,
2

kz
DA z kt k z kt

z DD t D t D t

A f z t

   
   π  

  ∂Θ Θ − + = − − +    ∂    
Θ

 

=



 



 
First Derivative of Θ  versus t: 

( )
2

0 0
2

* *

exp ,
2 22

A z z kt A f z t
t t D t D t

   ∂Θ Θ − Θ  = − =    π∂     

  

 
Second Derivative of C versus z: 

( )

*

2 22
0

2
** * * *

2

* * *

0
3

exp e erfc
2 2 2

exp
2

,
2

kz
DA z kt z kt k z kt

z DD t D t D t D t

kt z kt
D t D t D t

A f z t

      ∂ Θ Θ − − + = − +         ∂       
  − − −       

Θ
=

π

π

 



 
We have now to prove: 

2

* 2D k
t zz

∂Θ ∂ Θ ∂Θ
= −

∂ ∂∂

  

, or ( ) ( ) ( )0 * 0 0
2 3 1, , ,

2 2 2
D k

A f z t A f z t A f z t
Θ Θ Θ

= −   , or: 

( ) ( ) ( )2 3 1, , , ,AF z t AF z t AF z t= +                   (41) 

where: 

( ) ( ) ( ) ( ) ( ) ( )0 0 * 0
1 1 2 2 3 3, , , , , , , ,

2 2 2
k DF z t f z t F z t f z t F z t f z tΘ Θ Θ

= − = =
 

In the right part of Equation (41) we apply the theorem 1 of Bede and Gal 
[43]: For any ,a b R∈  with , 0a b ≥ , or , 0a b ≤ , and any fuzzy number 

Fu R∈  we have: ( )a b u a u b u+ ⋅ = ⋅ + ⋅   . Now the above equation becomes: 

( ) ( ) ( )( )2 3 1, , ,AF z t A F z t F z t= +                  (42) 

By substituting in Equation (41) the above expressions of  
( ) ( ) ( )1 2 3, , , , ,F z t F z t F z t , we obtain: 

2 2

0 0

* * * *

exp exp .
2 22 2

A z z kt A z z kt
t D t D t t D t D t

         Θ − Θ −      − = −                   π     
π

 

e 

As proven above, Equation (39) satisfies Equations ((23) and (34)), or their 
equivalent fuzzy Equation (19), provided that functions ( ) ( )1 3, , ,F z t F z t  are 
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both positive or both negative. 
In order to investigate the positivity or negativity of the above functions, we 

set in ( )1 ,F z t  and ( )3 ,F z t  for simplicity, kt zξ =  and *D kzη =  and we 
obtain: 

( ) ( ) ( ) ( )0 0
1 1 3 3, , , , ,

2 2
F z t g F z t g

z z k
k

η ξ η ξ
Θ Θ

= =           (43) 

where: 

( )
2 1

1
2 1 1 1, exp e erfc

2 2
g ηξ ξη ξ

ηηξ ηξ ηξ

  
 

π

    − + = − − − +       
     


,     (44) 

( )
2 1

3

2

1 1 1 1, exp e erfc
2 2

1 1exp
2

g ηξ ξ ξη ξ
ηξ ηξ ηξ ηξ

ξ
ηξ ηξ

   − − +
= − +      

   

 −
− −  

 

  
 
  
  
 

π   

       (45) 

Figure 2 and Figure 3 illustrate the dimensionless functions ( )1 ,g η ξ  and 
( )3 ,g η ξ  versus ξ, for various values of η. 

As derived from Figure 3, ( )1 ,F z t  is positive for every value of η, ξ and 
subsequently for all values of x and t. In order to examine the positivity of 

( )3 ,F z t , for a large spectrum of real soils, we examined 9 soils, whose properties 
are shown in Table 1. Soils 1 to 6 were taken from Nie et al. [57], while soils 7 to 
9 were taken respectively from Evangelides [58], Sakellariou-Makrantonaki [59] 
and Sismanis [60]. The diffusion coefficients D were calculated from the Van 
Genuchten formula [56]: 

( ) ( )
( ) ( ) ( )1 2 11

1 1 2 ,
m mS m m r

e e e e e
S r r

m

S

m K
D S S S S S

m
θ θ

α θ θ θ θ
−−  

 
− −

= − + − − =
− − 

  (46) 

The Vadose zone thickness is considered approximately 15 m and the values 
 

 
Figure 2. The function ( )1 ,g η ξ  versus the dimensionless parameter ξ. 

https://doi.org/10.4236/jsea.2020.134004


C. Tzimopoulos et al. 
 

 

DOI: 10.4236/jsea.2020.134004 55 Journal of Software Engineering and Applications 
 

 

Figure 3. The function ( )3 ,g η ξ  versus the dimensionless parameter ξ. 

 
Table 1. The properties of the sample soils. 

Sampl Soil texture θr (cm3/cm3) θr (cm3/cm3) α n m Ks (cm/min) D (cm2/min) k (cm/min) D/k (cm) η 

1 Sand 0.05 0.43 0.15 2.68 0.63 0.50 61.28 1.29 47.66 0.03 

2 Loam 0.08 0.43 0.04 1.56 0.36 0.02 4.75 0.05 96.6 0.06 

3 Silt 0.03 0.46 0.02 1.37 0.27 0.00 1.47 0.01 148.9 0.1 

4 Silty loam 0.07 0.45 0.02 1.41 0.29 0.01 2.58 0.02 131.6 0.09 

5 Clay loam 0.10 0.41 0.02 1.31 0.24 0.00 1.43 0.01 104.62 0.07 

6 Sandy loam 0.07 0.41 0.08 1.89 0.47 0.07 14.09 0.21 65.68 0.04 

7 Loamy sand 0.13 0.40 0.04 2.55 0.61 2.70 1866.05 10.0 186.65 0.12 

8 Sandy loam 0.11 0.35 0.05 4.60 0.78 1.04 722.01 4.4 163.92 0.11 

9 Sandy loam 0.05 0.42 0.05 3.45 0.71 2.60 1188.85 7.02 169.29 0.11 

 
of η are derived from: ( )* 1500D kη = . In Figure 3, the function ( )3 ,F z t  is 
calculated for 0.035 ~ 0.5η = . For this spectrum of values, the function is posi-
tive for values of ξ close to 1. 

It is derived as a conclusion that functions ( )1 ,F z t  and ( ( )3 ,F z t  are both 
positive for all soils examined, thus the problem has a fuzzy solution. 

Fuzzy Infiltration rate and fuzzy cumulative Infiltration 
The fuzzy infiltration rate is: 

2

0 2exp erfc
2

S S
S

S

SK K t K tSv A K
SK t S

  
 

π π

   
= − − +            



 ,       (47) 

and the fuzzy cumulative infiltration is: 
2 2

2

1 1exp erf
2 2

erfc .

S S
S

S

S
S

K t KS tI A K t S t
K SS

K tK t
S

  
= + − +        

 
−  

  π




ππ 


 




π 



       (48) 
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4. Results and Discussion 

The Fuzzy model was applied to 3 selected soils. These soils are shown in Table 
1, as soil sample numbers 7 (Loamy sand, [58]), 8 (Sandy loam, [59]) and 9 
(Sandy loam, [60]). 

4.1. First Case, Sample Number 7, Loamy Sand 

For the first case the following are valid: 3 30.4 cm cmsθ = , 3 30.13 cm cmrθ = , 
2

* 1856.5 cm minD = , 10 cm mink =  and the solution is: 

0.00540.27 10 10erfc e erfc
2 2 1856.5 2 1856.5

zA z t z t
t t

 − +   
Θ = +    

    



 ,      (49) 

where [ ]0.85 0.15 ,1.15 0.15A
α

α α  = + − 
 . 

In Figure 4, the soil water profiles 0Θ Θ , in real times t = 5, 10, 30 and 60 
min, approach { }30 5 10−± ×  at distances z = 450, 600, 1200, and 1800 cm re-
spectively from the origin. In Figure 5 the membership function of the 
( ) 0,z tΘ Θ  is illustrated in real times t = 5, 10, 30 and 60 min at z = 70 cm. In  

 

 
Figure 4. Moisture content profiles for t = 5, 10, 30, and 60 min for soil sample number 7. 

 

 
Figure 5. Membership function of ( ) 0,z tΘ Θ  at z = 70 cm for soil sample number 7. 
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Figure 6, the fuzzy cumulative infiltration I
α

  
  vs. t is illustrated, while in 

Figure 7, the fuzzy infiltration rate [ ]0v
α

  versus time is shown for soil sample 
number 7. 

4.2. Second Case, Sample Number 8, Sandy Loam 

For the second case the following are valid: 3 30.35 cm cmsθ = ,  
3 30.11 cm cmrθ = , 2

* 722.01 cm minD = , 4.4 cm mink =  and the solution 
is: 

0.00610.24 4.4 4.4erfc e erfc
2 2 722.01 2 722.01

zA z t z t
t t

 − +   
Θ = +    

    



 ,      (50) 

where [ ]0.85 0.15 ,1.15 0.15A
α

α α  = + − 
 . 

In Figure 8, the soil water profiles 0Θ Θ , in real times t = 5, 10, 30 and 60 
min, approach { }30 5 10−± ×  at distances z = 300, 400, 700, and 1100 cm respec-
tively from the origin. In Figure 9, the membership function of the ( ) 0,z tΘ Θ  is  

 

 
Figure 6. Fuzzy cumulative infiltration [𝐼𝐼] versus t for soil sample number 7. 

 

 
Figure 7. Fuzzy infiltration rate [v0] versus t for soil sample number 7. 
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Figure 8. Moisture content profiles for t = 5, 10, 30, and 60 min for soil sample number 8. 

 

 
Figure 9. Membership function of ( ) 0,z tΘ Θ  at z = 70 cm for soil sample number 8. 

 
illustrated in real times t = 5, 10, 30 and 60 min at z = 70cm. In Figure 10, the 
fuzzy cumulative infiltration I

α
  
  vs t is illustrated, while in Figure 11, the 

fuzzy infiltration rate [ ]0v
α

  versus time is shown for soil sample number 8. 

4.3. Third Case, Sample Number 9, Sandy Loam 

For the third case the following are valid: 3 30.42 cm cmsθ = ,  
3 30.05 cm cmrθ = , 2

* 1188.85 cm minD = , 7.02 cm mink =  and the solu-
tion is: 

0.00590.37 7.02 7.02erfc e erfc ,
2 2 1188.85 2 1188.85

zA z t z t
t t

 − +   Θ = +    
    





(51) 

where [ ]0.85 0.15 ,1.15 0.15A
α

α α  = + − 
 . 

In Figure 12, the soil water profiles 0Θ Θ , in real times t = 5, 10, 30 and 60 
min, approach { }30 5 10−± ×  at distances z = 400, 500, 1000, and 1400 cm re-
spectively from the origin. In Figure 13, the membership function of the  
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Figure 10. Fuzzy cumulative infiltration [𝐼𝐼] versus t for soil sample number 8. 

 

 
Figure 11. Fuzzy infiltration rate [v0] versus t for soil sample number 8. 

 

 
Figure 12. Moisture content profiles for t = 5, 10, 30, and 60 min for soil sample number 9. 
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Figure 13. Membership function of ( ) 0,z tΘ Θ  at z = 70 cm for soil sample number 9. 

 

 
Figure 14. Fuzzy cumulative infiltration [𝐼𝐼] versus time t for soil sample number 9. 

 
( ) 0,z tΘ Θ  is illustrated in real times t = 5, 10, 30 and 60 min at z = 70 cm. In 

Figure 14, the fuzzy cumulative infiltration I
α

  
  versus t is illustrated, while 

in Figure 15, the fuzzy infiltration rate [ ]0v
α

  versus time is shown for soil 
sample number 9. 

Important Remark 
As pointed out in introduction the linearized equation of Philip does not give 

accurate detailed description of flow profiles. However, this linear equation 
yields useful estimates of integral properties of cumulative infiltration I and of 
infiltration rate v0. In order to evaluate this property, we used the Valiantzas 
model [61], who has proposed a two-parameter vertical infiltration equation, 
located approximately at the middle of the domain of real soils. His model has 
compared with other nonlinear models providing accurate estimations of data: 

0.52 22
0.5 1

8
S

s
K S

I K S t
  
 

+


+


=                 (52) 
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Figure 15. Fuzzy infiltration rate [v0] versus time t for soil sample number 9. 
 

 
Figure 16. Comparison of the present crisp solution with the Valiantzas model. 

 
Figure 16 illustrates a comparison of the present crisp solution (Second case, 

number 8) with the Valiantzas model. The two models have accurate approxi-
mation with a mean square error of 6.8 × 10−5. 

5. Conclusions 

The Bede and Stefanini [46] theory with the generalized Hukuhara (g-H) deriva-
tive, as well as its extension on differential equations [48], allows researchers to 
solve practical problems, useful in engineering. It is now possible for engineers 
to take the fuzziness of various parameters involved into consideration, when 
calculating and deciding on their work. 

Vertical infiltration linear equation regarding the water movement in vadose 
zone has a fuzzy solution with a function ( ),z tΘ  being [gH – p] differentiable. 

The fuzziness of soil water movement diminishes as flow moves up in vertical 
direction. The fuzziness of cumulative infiltration rises vs time and the fuzziness 
of infiltration rate diminishes vs time. 
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Since there exist no previous treatments of the problem of vertical infiltration 
with Fuzzy Logic, comparison of the results of the present work is only possible 
between crisp solutions and the fuzzy solution. The difference between crisp so-
lution (CS) and fuzzy solution (FS) appearing in Figures 4-15, remains constant  
FS CS

15%
CS
−

=  for every value of α-cut. So, there is a serious problem for  

irrigation systems to be calculated with crisp solution, without considering the 
fuzziness of the problem. It is important for engineers and researchers to take 
into account uncertainties of such magnitude in order to proceed to decision 
making. More specifically, in problems of Irrigation and Drainage Engineering, 
the related design of irrigation and drainage networks can be more accurate if 
the possible lower and higher limits of the water-front are known beforehand. 

As is pointed in the remark, the linearized solution estimates well the pheno-
mena of cumulative Infiltration and Infiltration rate for real soils. 
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