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Abstract 
We present in this paper a new method for solving polynomial eigenvalue 
problem. We give methods that decompose a skew-Hamiltonian matrix using 
Cholesky like-decomposition. We transform first the polynomial eigenvalue 
problem to an equivalent skew-Hamiltonian/Hamiltonian pencil. This process 
is known as linearization. Decomposition of the skew-Hamiltonian matrix is 
the fundamental step to convert a structured polynomial eigenvalue problem 
into a standard Hamiltonian eigenproblem. Numerical examples are given. 
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1. Introduction 

In this work we propose a numerical approach for solving the kth degree poly-
nomial eigenvalue problem 

( )
0

0
k

i
i

i
P v M vλ λ

=

= =∑                       (P) 

Problem (P) arises in many applications in science and engineering, ranging 
from the dynamical analysis of structural systems such as bridges and buildings 
to theories of elementary particles in atomic physics [1] [2]. It’s also the most 
important task in the vibration analysis of buildings, machines, and vehicles [3]. 
We first transform our kth degree polynomial eigenvalue problem (P) to an 
equivalent first-degree equation ( ) 0A B vλ− =  commonly called pencil prob-
lem. In the case when matrices iM  have symmetric/skew-symmetric structure, 
the problem (P) is transformed to a skew-Hamiltonian/Hamiltonian pencil [4]. 
The second step is to transform the skew-Hamiltonian/Hamiltonian pencil to a 
standard Hamiltonian eigenproblem Hv vλ=  [5]. This transformation is ob-
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tained after decomposing B as TR JR  where R is a permuted triangular matrix.  

The Hamiltonian matrix H is given by T T 1J R AR− −  where 
0

0
n

n

I
J

I
 

=  − 
. 

It is known that any nonsingular skew-symmetric matrix has a decomposition 
of the form TB R JR=  [6]. The real matrix TM J B=  is skew-Hamiltonian 
and has the decomposition T JJ B R R=  where R has the form of a permuted 
triangular matrix. We give here a new proof for this result and different algo-
rithms that compute the decomposition JM R R= . 

2. Preliminaries  

We give in this paragraph, new definitions and useful propositions. 

Let 2

0
0
n

n
n

I
J J

I
 

= =  − 
, where nI  denotes the n n×  identity matrix. We  

will use J when the size is clear from the context. Recall that a matrix 2 2n nM ×∈  
is skew-Hamiltonian if JM M= , where the J-transpose of the matrix M is defined  

by TJ TM J M J= . Likewise, a Hamiltonian matrix H is written as T

E G
F E
 
 − 

  

where E, G and n nT ×∈  with TG G=  and TF F= . We have JH H= − . 
More general, the J-transpose of the rectangular 2p-by-2q matrix N is defined by 
2q-by-2p matrix T T

2 2
J

q pN J N J= . 
The set ( )1i i nE

≤ ≤
 where [ ]i i n iE e e +=  with ie  is denoting the i-th unit 

vector of length 2n, satisfies 2 2i n iE J J E= , TJ
i iE E=  and T

2i j ijE E Iδ=  where 

T T
2 2

J
i i nE J E J=  and 

1 if
0 ifij

i j
i j

δ
=

=  ≠
  

Let [ ] 2 2
1 2, nU u u R ×= ∈  where 

2
1

1
1

n

i i
i

u u e
=

= ∑  and 
2

2
2

1

n

j j
j

u u e
=

= ∑ . Then U is writ-

ten in a unique way as linear combination of ( )1i i nE
≤ ≤

 on 2 2× , 
1

n

i i
i

U E M
=

= ∑  

where 
1 2

1 2
i i

i
n i n i

u u
M

u u+ +

 
=  
 

. Let 2 2n nM ×∈  be a 2n-by-2n real matrix. Then M 

is written as T

1 1

n n

i ij j
i j

M E M E
= =

= ∑∑  where ,

, ,

ij i n j
ij

n i j n i n j

m m
M

m m
+

+ + +

 
=  
 

. 

Definition 2.1. The 2n-by-2n real matrix T

1 1

n n

i ij j
i j

L E L E
= =

= ∑∑  is called lower 

J-triangular if 2 20ijL ×=  for j i>  and iiL
∗ 

=  ∗ ∗ 

0
, (i.e., T

1 1

n i

i ij j
i j

L E L E
= =

= ∑∑ ). 

Definition 2.2. The 2n-by-2n real matrix T

1 1

n n

i ij j
i j

U EU E
= =

= ∑∑  is called upper 

J-triangular if 2 20ijU ×=  for i j>  and iiU
∗ ∗ 

=  ∗ 0
, (i.e., T

1

n n

i ij j
i j i

U EU E
= =

= ∑∑ ). 

Proposition 2.1. Let M and N be two upper J-triangular (respectively, lower 
J-triangular) 2n-by-2n real matrix. The product P MN=  remain as upper 
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J-triangular (respectively, as lower J-triangular). 

Proof. Let T

1

n n

i ij j
i j i

M E M E
= =

= ∑∑  and T

1

n n

i ij j
i j i

N E N E
= =

= ∑∑  two upper J-triangular 

2n-by-2n real matrix. The matrix product of M and N is obtained by  

T T

1 1
.

ik

n n n n n k

i ij jk k i ij jk k
i j i k j i k i j i

P

P E M N E E M N E
= = = = = =

 
= =  

 
∑∑ ∑ ∑∑ ∑



 

That proves P MN=  remain as upper J-triangular. (similarly, when M and N 
are lower J-triangular).                                               

Definition 2.3. [ ] 2 2
1 2, nU u u ×= ∈  is called J-isotropic if  

( )T
1 2 2 20JU U u Ju I= = . 

Proposition 2.2. The inverse of a regular upper J-triangular 2n-by-2n real 
matrix (respectively, lower J-triangular) is also upper J-triangular (respectively, 
also lower J-triangular). 

Proof. Let T

1

n n

i ij j
i j i

U EU E
= =

= ∑∑  an upper J-triangular 2n-by-2n real matrix. The 

following proposition ( ) 1

1
:

k

k k l l
l

P U E E C−

=

= ∑ , where ( )1l l kC
≤ ≤

 are 2-by-2 real 

matrix, holds for 1k = . Suppose ( )1i i kP
≤ ≤

 are true for 1 i k≤ ≤ , ( )k n< . For 

1i k= + , we have 
1

1
1 1

1

k

k i ik
i

U E EU
+

−
+ +

=

= ∑ , therefore 

 
( )

1

1 1
1 1 1 1 1

1

1 1
1 1 1 1

1

k

k

k i ik k k k
i

E

k

i ik k k k
i

U UE U EU E U

U EU U E U

+

− −
+ + + + +

=

− −
+ + + +

=

 = + 
 

= +

∑

∑



 

Since 1, 1
1, 1

1, 10
k k

k k
n k n k

u
U

u
+ +

+ +
+ + + +

∗ 
=  
 

 is invertible and by using recurrence 

hypothesis, then 

 

( )

( )

1 1 1 1
1 1 1 1 1 1 1

1

1 1
1 1 1 1 1 1
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1 1
1 1 1 1 1 1

1
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i j
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l l
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U E E U U E U U
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− − − −
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− −
+ + + + + +

= =

− −
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= =
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=
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∑ ∑
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∑

 

with 1, 11
1, 1 1, 1

1, 1

1

10

k k
k k k k

n k n k

u
G U

u

+ +−
+ + + +

+ + + +

 ∗ 
 = =
 
 
 

. 
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3. Cholesky Like-Decomposition for Skew-Hamiltonian  
Matrix  

In this section, we study different ways to compute JR R  decomposition of a 
real skew-Hamiltonian matrix 2 2n nM ×∈ . We began first by giving some in-
teresting theoretical results. 

3.1. Definition and Theoretical Results  

Definition 3.1. The 2n-by-2n real skew-Hamiltonian matrix M is called 
J-definite if 2

JU MU Iα=  with 0α ≠  for every non J-isotropic  
[ ] 2 2

1 2, nU u u ×= ∈  (i.e., T
1 2 0u Ju ≠ ). 

Remark 3.1 For [ ] 2 2
1 2, nU u u ×= ∈  and a 2n-by-2n real skew-Hamiltonian 

matrix M, 

T T
2 1 2 2

0
2T T

1 1 1 2
0

J

u JMu u JMu
U MU I

u JMu u JMu
α

 − −
 

= = 
 
 





 with T
1 2u JMuα = . 

Lemma 3.1. If M is a 2n-by-2n real skew-Hamiltonian and J-definite matrix, 
then M is invertible. 

Proof. If not, there exists 2nv∈  such that 20 nMv =


. Let 2nu∈  that 

verify [ ] 2 2, nU u v ×= ∈  non J-isotropic (i.e., T 0u Jv ≠ ). Since 20 nMv =


, then 

( )T
2 2

0

0JU MU u JMv I= =


 which is contradictory with the hypothesis.        

Theorem 3.2. If M is a 2n-by-2n real skew-Hamiltonian, J-definite matrix, 
then M has an LU J-factorization. 

Proof. Let 2 2kW ×∈  (1 k n≤ ≤ ) be non J-isotropic. Suppose that  

1

k

i i
i

W E C
=

= ∑  where 2 2
iC ×∈ . We construct an 2 2nU ×∈  such that  

1

n

i i
i

U E C
=

= ∑  where 2 20iC ×=  for i k> . We have, [ ],k kJ JU MU W M W=  

where [ ], T

1 1

k k
k k

i ij j
i j

M E M E
= =

= ∑∑  as defined in theorem 2.2 given above. Then 

2k-by-2k matrix [ ],k kM  remains skew-Hamiltonian and J-definite and then in-
vertible.                                                           

Corollary 3.3. If M LU=  is the LU J-factorization of the real 2n-by-2n 
skew-Hamiltonian, J-definite matrix M, then M has an JM L L= ∆  where  

T

1

0
0

n
ii

i i
i ii

u
E E

u=

 
∆ =  

 
∑  (here iiu  is the i-th diagonal entry of U). 

Proof. Since the matrix M is skew-Hamiltonian, then by taking U N= ∆  we 
obtain 

 ( )JJ J J J J JM LU U L N L N L= = = ∆ = ∆  

( )JJM N L= ∆  is nothing but the LU  J-factorization of M. Indeed, JN  is 
lower J-triangular with 1 in diagonal and ( )JL∆  is upper J-triangular. Thus, 
from the uniqueness of the LU  J-factorization, it follows that JN L= .      
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Theorem 3.4. Let M be a 2n-by-2n real skew-Hamiltonian J-definite matrix, 
then M has a Cholesky J-factorization JM NN=  where N is lower J-triangular  

and in addition the ,

,

0
0
i i

ii
n i n i

n
N

n + +

 
=  
 

 are diagonal. 

Proof. We proceed by induction on n. For 1n = , the real 2-by-2 
skew-Hamiltonian J-definite matrix 11 2M m I=  where 11 0m ≠ . If we set  

( )
11

11 11

0

0

m
N

sign m m

 
 =
 
 

, the theorem holds trivially. 

Let’s now 2n ≥ . Since M is skew-Hamiltonian and J-definite, then 

1 1 11 2 20JE ME m I= ≠ . We can write 

 

T

1 1

T T T
1 11 1 1 1 1 1

2 2

T

2 2
.

n n

i ij j
i j

n n
J

i i i i
i i

n n

i ij j
i j

M E M E

E M E E M E E M E

E M E

= =

= =

= =

=

= + +

+

∑∑

∑ ∑

∑∑

 

We set T
1 1

2

n

i i
i

W E M E
=

= ∑  and T

2 2

n n

i ij j
i j

B E M E
= =

= ∑∑ . The J-transpose of W is given 

by T
1 1

2

n
J J

i i
i

W E M E
=

= ∑ . Let 
( )

11

11 11

0

0

m
K

sign m m

 
 =
 
 

,  

T T T
1 1 1 1 1

2 2

n n
J

i i i i
i i

B E KE E M K E E E−

= =

= + +∑ ∑  and T
1 1 1

11

1 JA E E B WW
m

= + − . We  

calculate T T
1 1 1 1 1 1

2 11

1n
J J

i i
i

B A E KE E M K E B WW
m

−

=

= + + −∑ . The J-transpose of 1B  

is given by T 1 T T
1 1 1 1 1

2 2

n n
J J J

i i i i
i i

B E K E E K M E E E−

= =

= + +∑ ∑ . Finally, we obtain 

 

( ) ( )

( )
2 2

2
11

T 1 T T
1 1 1 11 1 1 1 1 1 1

2 2

1 T
1 1

2 2 11
1

1

n n
J J J J

i i i i
i i

I I

n n
J J J

i i j j
i j

I
m

B A B m E E E KK M E E M K K E

E M K K M E B WW
m

− −

= =

− −

= =

= + +

+ + −

∑ ∑

∑∑

 



 

Since T
1 1

2 2

n n
J J

i i j j
i j

WW E M M E
= =

= ∑∑ , then 1 1 1
JB A B M= . By induction  

11

1 J JB WW LL
m

− = , where T

2 2

n i

i ij j
i j

L E L E
= =

= ∑∑  where L is ( )2 1n − -by- ( )2 1n −  

lower J-triangular matrix and in addition the ,

,

0
0
i i

ii
n i n i

l
L

l + +

 
=  
 

 are diagonal for 

2, ,i n=  . Therefore, if we let T
1 1

JG E E LL= + , we obtain  
T

1 1 1
J JGG E E LL A= + =  and then finally 
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( ) ( )( )1 1 1 1 1 1 1 .JJ J J JM B A B B GG B B G B G NN= = = =  

Since 1B  and G are lower J-triangular, then 1N B G=  remain lower 

J-triangular and verify ,

,

0
0
i i

ii
n i n i

n
N

n + +

 
=  
 

 are diagonal.                  

3.2. Method 1  

We construct an algorithm that gives decomposition JR R  of skew-Hamiltonian 
matrices via a LU  J-decomposition. 

Proposition 3.5. Let M is a 2n-by-2n real skew-Hamiltonian, J-definite matrix. 
If M LU=  its LU  J-factorization, then ( )JR LD=  where D is a diagonal 
matrix defined by 

( )
( ) ( )

T

1

0

0

n ii ii
i i

i ii ii ii

sign u u
D E E

sign u sign u u=

 
 =
 
 

∑   

(here iiu  is the i-th diagonal entry of U) is lower J-triangular and verify 
JM R R= . 

Proof. By corollary 3.3, JM L L= ∆ . Since 
1

0
0

n
iiJ T

i i
i ii

u
DD E E

u=

 
∆ = =  

 
∑  

where D is as given above, then ( )JR LD=  is lower J-triangular and  
J J JR R L DD L M

∆
= =



. From the J-decomposition M LU=  given by algo-

rithms in section, we set  

( )
( ) ( )

T

1

0

0

n ii ii
i i

i ii ii ii

sign u u
D E E

sign u sign u u=

 
 =
 
 

∑  

where T
ii i iu e Ue= . We have JM R R=  where ( )JR LD= .                 

3.3. Method 2  

We study now a method that constructs decomposition JR R  of skew-Hamiltonian 
J-definite matrices. 

Let 2 2n nM ×∈  be a skew-Hamiltonian J-definite matrix. 

 T

1 1

n n

i ij j
i j

M E M E
= =

= ∑∑  

with , ,

, ,

i j i n j
ij

n i j n i n j

m m
M

m m
+

+ + +

 
=  
 

 and [ ] 2 2n
i i n iE e e ×

+= ∈ . Let JM LL=  where 

L is lower J-triangular that verify ,

,

0
0
i i

ii
n i n i

l
L

l + +

 
=  
 

. The existence of L is 

guaranteed by theorem 4.4 

 T

1
.

n n

i ij j
i j i

L E L E
= =

= ∑∑  

Since 

https://doi.org/10.4236/jamp.2020.84047


M. Bassour 
 

 
DOI: 10.4236/jamp.2020.84047 615 Journal of Applied Mathematics and Physics 
 

 

T T T

1 1 1 1 1 1

T T

1 1 1 1 1

n i n k n i n
J J J

i ij j s ks k i is ks k
i j k s i s k s

n n i n n
J

i is js j i ij j
i j s i j

LL E L E E L E E L L E

E L L E E M E

= = = = = = =

= = = = =

  = =  
  

 = =  

∑∑ ∑∑ ∑∑∑

∑∑ ∑ ∑∑
 

then 
( )min ,

1

i j
J

ij is js
s

M L L
=

= ∑  

If 1i = , 1j =  then 1s = . We obtain 11 11 11
JL L M= . Since ( )11 11 11 2detJL L L I=  

and 11 11 2M m I= , then 11 1 1 11n nl l m+ +× = , then  

( )
( ) ( )

11 11 11

1 1 11 11 11n n

l sign m m

l sign m sign m m+ +

 =


=
 

And for 2,3, ,i n=  , 1 1 11
J

i iM L L= . Multiplying on the right by 11L , we obtain 

 ( )1 11 1 11 11 11 1detJ
i i iM L L L L L L= =  

Thus 

 
( )

( )

( ) ( )

11 11

111 11
1 1

11 11 11 11

11

0

det
0

i
i i

sign m m
mM LL M

L sign m sign m m
m

 
 
 

= =  
 
 
 

 

Since 

 ( ) ( )22 21 21 22 22 21 2 22 2det detJ JM L L L L L I L I= + = +  

then, 

( ) ( ) ( )( )22 2 22 21 2 22 21 2det det detL I M L I m L I= − = −  

Since ( )22 22 2 2det n nL l l + += × , then 
If we set ( )2 22 21detm Lα = − , then we obtain  

( )
( ) ( )

2 2
22

2 2 2

0
.

0

sign
L

sign sign

α α

α α α

 
 =
 
 

 

However 2 1 21 2 22
J J

i i iM L L L L= +  for 2,3, ,i n= 
, then 2 22 2 1 21

J J
i i iL L M L L= − . 

Multiplying on the right by 22L  we find ( )2 22 22 2 1 21 22
J J

i i iL L L M L L L= −  and fi-

nally 
( )

( )
2 1 21 22

2
22det

J
i i

i

M L L L
L

L
−

= . 

The method yield the following algorithm. 
Algorithm: 
for 1,2, ,j n=   

( )
1

1
det

j

j jj js
s

m Lα
−

=

= −∑  
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( ) ( )
1 0

0jj j j
j

L sign
sign

α α
α

 
=   

 
 

for 1, 2, ,i j j n= + + 
 

( )

1

1

det

j
J

ij is js jj
s

ij
jj

M L L L
L

L

−

=

 
− 

 =
∑

 

4. Polynomial Eigenvalue Problems  

Many applications give rise to structured matrix polynomial eigenvalue prob-
lems 

 ( )
0

0
k

i
i

i
P v M vλ λ

=

= =∑  

The numerical solution of this polynomial eigenvalue problem is one of the most 
important tasks in the vibration analysis of buildings, machines and vehicles [7]. 
In many applications, the coefficient matrices have particular structure and it is 
important that numerical methods respect this structure. A popular approach 
for solving the polynomial eigenvalue problem ( ) 0P vλ =  is to linearize to 
produce a generalized eigenproblem ( ) 0A B vλ− =  [8]. 

Theorem 4.1. [9] Consider the polynomial eigenvalue problem ( ) 0P vλ =  
with either ( )T 1 i

i iM M= −  or ( ) 1T 1 i
i iM M+= −  and with kM  nonsingular. 

Then solving problem ( ) 0P vλ =  is equivalent to solve ( ) 0A B vλ− =  where 

0

2 3 4

3 4

4

0 0 0 0
0
0 0
0 0

0 0 0 0

k

k

M
M M M M

M M
A M

M

− 
 − − − − 
 
 = − 
 
 
 
 ± 

 

 

  

  

 

 

and 

1 2 3 1

2 3 4

3 4

4

0
0
0

0 0 0 0

k k

k

k

M M M M M
M M M M

M M
B M

M

− 
 − − − − 
 
 = − 
 
 
 
 ± 

 

 

 

 

 

 

We draw from this theorem that the polynomial eigenvalue problem (P) can 
be reduced to an eigenvalue pencil problem Av Bvλ=  where A is symmetric 
and B is skew-symmetric. The second step is to transform the skew-symmetric/ 
symmetric pencil to a standard Hamiltonian eigenproblem Hv vλ=  by de-
composing the skew-Hamiltonian matrix JB  as JR R . The Hamiltonian ma-
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trix H is then obtained by T T 1J R AR− − . Eigenvalue problems of this type arise 
property that all eigenvalues appear in quadruples ( ), , ,λ λ λ λ− − , the spectrum 
is symmetric with respect to the real and imaginary axes. 

5. Numerical Examples  

We present computed eigenvalues that solve the kth degree polynomial eigenva-
lue problem ( ) 0 0k p

ppP v M vλ λ
=

= =∑  of dimension n n×  which is trans-
forming to a standard eigenvalue problem of dimension kn kn× . We also 
compute the error consisting in  

 ( ) ( )
21

kn
i

i
i

err P vλ
=

= ∑  

Example 1. [9] 
Let us consider a quartic eigenvalue problem of the form  

( )4 3 2
4 3 2 1 0 0M M M M M vλ λ λ λ+ + + + = . 

We obtain a 144 × 144 quartic pencil, whose 576 eigenvalues are shown in 
Figure 1 given above. 

( ) ( )
576

21
1.2471 014i

i
i

err P v eλ
=

= = −∑  

Example 2. [10] 
Now, let us consider the following quadratic eigenvalue problems given by 

( )2 0nI C K vλ λ+ + = . The 400 eigenvalues are shown in Figure 2 below  

( ) ( )
400

21
3.1581 013i

i
i

err P v eλ
=

= = −∑  

 

 
Figure 1. Eigenvalues of 144 × 144 polynomial problems. 
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Figure 2. Eigenvalues of 400 quadratic polynomial problems.  

6. Conclusion 

We have proposed a numerical approach for solving polynomial eigenvalue 
problems structured. We first transform polynomial eigenvalue problem  
( ) 0 0k i

iiP v M vλ λ
=

= =∑  to a skew-Hamiltonian/Hamiltonian pencil  
( ) 0A B vλ− = . The second step is to transform the pencil into a standard Ha-
miltonian eigenproblem Hz zλ= . Numerical methods based on these struc-
tured linearizations are expected to be more effective in computing accurate ei-
genvalues in practical applications. My future work based on this current study 
is to solve the large matrix equations applied in signal processing, image restora-
tion and model reduction in control theory. 
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