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Abstract 
Training can now be delivered on a large scale through mobile and web-based 
platforms in which the learner is often distanced from the instructor and their 
peers. In order to optimize learner engagement and maximize learning in these 
contexts, instructional content and strategies must be engaging. Key to the de-
velopment and study of such content and strategies, and adaptation of instruc-
tional techniques when learners become disengaged, is the ability to objec-
tively assess engagement in real-time. Previous self-reported metrics, or expen-
sive EEG-based engagement measures are not appropriate for large-scale plat-
forms due to their complexity and cost. Here we describe the development and 
testing of a measurement and classification technique that utilizes non-invasive 
physiological and behavioral monitoring technology to directly assess engage-
ment in classroom, simulation, and live training environments. An experimen-
tal study was conducted with 45 students and first responders in a unmanned 
aircraft systems (UAS) training program to assess the ability to accurately as-
sess learner engagement and discriminate between levels of learner engagement 
within classroom, simulation and live environments via physiological and be-
havioral inputs. A series of engagement classifiers were developed using car-
diovascular, respiratory, electrodermal, movement, and eye-tracking features 
that were able to successfully classify engagement levels at an accuracy level of 
85% with eye-tracking features included or 81% without eye-tracking fea-
tures. This approach is capable of monitoring, assessing, and tracking learner 
engagement across learning situations and contexts, and providing real-time 
and after action feedback to support instructors in modulating learner engage-
ment. 
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1. Introduction 

Digital technologies are increasingly being exploited in self-directed or guided 
educational settings to provide individualized opportunities for learning. Emerg-
ing technology can now deliver training on a larger scale through platforms such 
as massive open online courses (MOOCs), instructional use of games, and vir-
tual classrooms [1]. These emerging training environments rely heavily on learn-
er-initiated involvement and motivation before, during, and after training [2]. 
Self-motivation guides personal effort and the allocation of resources toward work 
[3], and leads to significantly greater declarative knowledge and skill acquisition, 
higher post-training self-efficacy, and improved performance [4]. Personal mo-
tivation represents the driving force behind learning activities and can lead to 
learner engagement, a person’s active involvement in a learning activity [5]. High 
levels of engagement have been associated with a state of flow, in which an indi-
vidual becomes completely engaged in a task marked by high levels of interactiv-
ity, challenge, and feedback; a state which has been found to lead to improved 
task performance and learning outcomes [6]. Learner engagement is influenced by 
a range of factors related to the individual learner, the learning tasks, and the 
learning environment [7]. The ability to measure and optimize learner engage-
ment during training holds the potential to increase the transfer of training to 
practice, leading to enhanced digital training effectiveness [6].  

A number of approaches to measure learner engagement have been reported 
previously. Self-report questionnaires and interviews provide non-invasive and 
inexpensive methods to assess learner engagement, but do not provide results in 
real-time [8], and are associated with bias which affects the reliability and valid-
ity of such approaches [9]. Analysis of facial expressions using computer vision 
can determine affective components of learner engagement and can be applied 
to groups [10], but may be considered obtrusive and suffer from privacy con-
cerns [11]. Cognitive engagement classifiers have been reported using laboratory 
grade physiological sensors, but require high cost sensor technology, and are com-
plex from a usability and data analysis perspective. For example, a previous elec-
troencephalography (EEG)-based engagement classifier returns a 3-level score be-
tween relaxed wakefulness and high engagement based on individual performance 
in a protracted psychomotor vigilance task [12]. However, the expense associated 
with EEG equipment, complex data interpretation, and sensor montaging have 
limited the use of EEG in learning settings. Alternatively, there are a range of phy-
siological measures that provide an opportunity for validly and non-invasively 
measuring engagement. Measures such as electrodermal activity (EDA) [13], heart 
rate and heart rate variability (HRV) [14], and gross body movement [15] have 
been used to monitor learner engagement and learning performance. Previous 
research has also indicated that analysis of eye tracking data can offer insight in-
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to engagement during gaming [16], online search [17], and online conversations 
[18]. While there is theoretical support for the use of these measures to capture 
engagement, to date there is limited empirical research identifying valid meas-
ures of engagement that are noninvasive, easy to use, and scale to large popula-
tions. 

There is a need to evaluate emerging sensor technology to measure learner 
engagement objectively in real-time, via noninvasive, wireless sensors. Here we 
describe the development and testing of a measurement and classification tech-
nique that utilizes non-invasive physiological monitoring technology with sub-
jective self-report measures to directly assess engagement in classroom, simula-
tion, and live training environments to support instructor interventions to increase 
engagement. Using unmanned aircraft systems (UAS) instructional materials, we 
delivered instructional content via video-based, simulated flight, and live flight 
training tasks that were designed to vary in cognitive engagement based on va-
rying levels of interactivity, challenge, feedback, and immersion. We hypothe-
sized that participant engagement, and associated participant physiology and 
behavior, would differ between tasks, with increasing levels from video to simu-
lation to live training. This was also hypothesized to provide features necessary 
to develop a high accuracy classifier of engagement state. 

2. Methods 
2.1. Participants 

All methods involving participants were approved by an Institutional Review 
Board (IRB; Florida Institute of Technology [FIT]). A priori power analysis with 
α = 0.05, β = 0.8, and d = 0.4 indicated a sample size of 41 participants needed, 
with an additional 20% included to address participant attrition. Forty-nine adult 
participants from the Melbourne, FL, USA area were recruited from an FIT UAS 
course, FIT drone club, and UAS operators from local first responder agencies. 
Participation was voluntary and all student participants were given the option to 
perform an alternate task if they were not interested in participating in the study. 
Student participants were given extra credit in the UAS course for their partici-
pation.  

2.2. Materials 

A demographic survey was used to determine participant gender, age, and UAS 
experience. The Flow Short Scale (FSS) was used to assess self-reported engage-
ment [19], as a state of flow is proposed to represent a high level of learner en-
gagement [7]. A Dell Precision M2800 laptop PC, with 8 GB RAM and a quad 
core CPU was used to provide video and simulation training. Simulation train-
ing used Real Flight 7.5 software, along with a U818A-1 quadcopter controller 
(UDIRC Technology, Guangdong, China). For live UAS training, the U818A-1 
quadcopter was flown through a series of physical obstacles in a high bay learn-
ing environment (Figure 1). 
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Figure 1. Experimental tasks. Top panel: participants viewed instructional flight videos 
while holding UAS controllers and mimicking movements in the video task. Center pan-
el: participants controlled a virtual UAS in a number of flight tasks within Real Flight 7.5 
software as part of the simulation task. Bottom panel: participants controlled a UAS 
through a series of physical obstacles as part of the live flight task. Depicted participants 
provided written informed consent for publication of this figure. 
 

The Equivital EQ02 system (Hidalgo; Cambridge, UK) was used to collect elec-
trocardiography (ECG; 256 Hz), electrodermal activity (EDA; 2 Hz), respiratory 
rate (0.0667 Hz), and accelerometry (25.6 Hz). The VT3 mini eye tracker (Eye-
Tech; Mesa, AZ, USA) was used to quantify participants’ gaze location (45 Hz) 
during computer-based tasks (video training and simulation, described below).  

2.3. Experimental Procedure 

Upon arrival participants provided written, informed consent and were briefed 
on the experimental learning tasks. Participants then responded to a demographic 
questionnaire and were fitted with the Equivital device. Participants were in-
structed to stand comfortably and read a magazine for 5 minutes while a physi-
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ological baseline was collected. After the baseline, participants were directed to 
the adjacent room for a series of computer-based UAS tasks with varying levels 
of engagement. Participants stood in front of a workstation, with height adjusted 
to ensure adequate alignment with the eye tracker, and the eye tracker was cali-
brated. Participants then watched a series of videos on how to use the UAS con-
trollers while holding the UAS controller and mimicking the movements dis-
played in the videos for a duration of six minutes. The video training task was 
hypothesized to have low levels of engagement, due to low levels of interactivity, 
challenge, goal clarity, feedback, and immersion. The next task consisted of per-
forming a series of UAS obstacles in the Real Flight 7.5 simulator, and was hy-
pothesized to have moderate to high levels of engagement due to high levels of 
interactivity, challenge, goal clarity and feedback and moderate levels of immer-
sion. Finally, participants moved to a live, indoor, high-bay, learning environment 
where they completed the live training task, which included flying a UAS quad-
copter through a series of physical obstacle courses. The live task was hypothe-
sized to induce high levels of engagement due to high levels of interactivity, chal-
lenge, goal clarity, feedback and immersion of the learning environment. In both 
simulation and live training tasks, participants completed as many obstacle course 
challenge levels as they could, within the six minute session, up to the maximum 
of 10 levels. Challenge levels increased in difficulty, requiring increasing levels of 
skill such as hovering, flying in various orientations, and landing. Participants in 
simulation and live training also received clear goals related to their objective 
prior to the challenge and received performance feedback after each failed attempt 
at a level. Two performance measures were captured during the simulation and 
live tasks. Outcome performance was assessed based on the number of levels com-
pleted. Errors were assessed based on the number of times the UAS bumped into 
an object or crashed. Participant performance was not assessed during the video 
task. Participants responded to the FSS survey immediately following each task. 
All participants completed the tasks in the same order. Eye-tracking was not 
captured during the live training task.  

2.4. Data Modeling 

Physiological data analysis and classifier development consisted of synchroniza-
tion between data capture systems, feature extraction, and data modeling. Data 
analysis was implemented in Python 3.7 with scikit-learn [20]. Data from each 
sensor was graphically visualized and synchronized with events of interest in-
cluding: baseline; video training; simulation training; and live training. Any epochs 
of signal loss, such as when participants were not looking at the screen for eye 
tracking, were also identified.  

In order to preserve temporal relationships among variables, timestamps for 
data arising from the Equivital system were synchronized. Respiration rate and 
heart rate were up sampled with linear interpolation to 0.133 Hz. The Equivital 
and EyeTech systems were synchronized with an NIST clock and the eye-tracker 
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was adjusted to synchronize with the Equivital clock. Classification was performed 
on 30 second blocks of data and synchronization errors were constrained below 
5 seconds. 

Features were extracted from the raw physiological data, baseline normalized, 
and updated every 30 seconds to provide input to an engagement classifier. Fea-
tures which were not predictive of the user state were removed, and dimensio-
nality reduction was performed to combine features as needed. A random forest 
algorithm was utilized to rank feature significances collected from the Equivital 
and eye tracking systems. Features from the Equivital system included mean EDA, 
respiration rate, accelerometer signal magnitude area (SMA), mean heart rate 
(HR), QRS duration, QRS sum [21], and heart rate variability (HRV) measured 
by the ratio of low frequency (LF) HRV, defined as the sum of the power spectral 
density (psd) of the IBI signal in the 0.04 to 0.15 Hz range, over high frequency 
(HF) HRV, defined as the sum of the psd from 0.15 to 0.4 Hz range. Features de-
rived from the eye tracker included the mean fixation number and mean fixation 
duration, defined as maintenance of visual gaze on a single location, defined as 3 
visual degrees and >100 ms [22]. 

Once the features were selected, two separate models were trained: one in 
which the participants’ data were broken down by task into 2 states (low and 
high engagement) corresponding to the video and simulation tasks due to the 
lack of eye tracking data in the live task; and one in which the participant’s data 
were broken down by tasks into 2 states (low and high engagement) corres-
ponding to the video and live tasks for situations in which eye-tracking is not 
feasible. To predict the engagement state of the participants, the extracted features 
were subjected to a logistic regression analysis. A series of models were trained 
to map the 5 selected continuous physiological variables to two discrete states 
(low/high engagement) using 5 fold cross-validation, iteratively repeated 100 
times, to minimize bias and variance. Final model parameters were taken from 
the model with the highest classification accuracy across both testing and train-
ing sets. 

2.5. Data Analysis and Statistics 

Participant performance was assessed using two measures. First, outcome per-
formance was measured based on the number of challenge levels that a partic-
ipant successfully completed, out of a maximum of 10, with participants re-
ceiving 10 points per level completed. Second, participant errors were assessed 
using a count of the number of times that the UAS bumped into an object or 
crashed. 

Differences between training task self-reported engagement were evaluated 
using repeated measures ANOVA with α = 0.05. Differences in performance be-
tween the video and simulation tasks were analyzed using repeated measures t 
tests with α = 0.05. Statistical analyses were performed in IBM SPSS Statistics 
version 23. 
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3. Results 

The sociodemographic factors in the study sample are listed in Table 1. Four 
participants were removed from the study due to missing physiological data, 
leaving forty-five participants for data analysis and modeling. Most participants 
were male, of an average age 25.7 ± 9.9 years, and had some previous UAS expe-
rience, defined as UAS usage 1 - 3 times per year. 

Users evaluated each training task immediately following exposure using FSS 
scale (Figure 2). Differences were observed in self-reported engagement [F(2, 88) 
= 13.697, p = 0.0000066]. Post-hoc testing indicated significant differences be-
tween video and simulation training (p = 0.003), between video and live training 
(p = 0.0001), and between simulation and live training (p = 0.007). 
 
Table 1. List of sociodemographic factors in the study sample. 

 Study sample % (n) 

Gender  

Male 82 (37) 

Female 18 (8) 

Age group  

17 - 20 31 (14) 

21 - 25 42 (19) 

26 - 30 11 (5) 

>30 16 (7) 

UAS Experience  

Never flown a UAS 33 (15) 

Sometimes (1 - 3 times/year) 40 (18) 

Often (monthly) 27 (12) 

 

 
Figure 2. Boxplots overlaid with raw data of self-reported engagement using the FSS sur-
vey. Participants rated the simulated training session significantly higher than the video 
training, and the live training significantly higher than both the simulated and video 
training sessions. *p < 0.05. 

 

DOI: 10.4236/jbbs.2020.103010 171 Journal of Behavioral and Brain Science 
 

https://doi.org/10.4236/jbbs.2020.103010


M. Carroll et al. 
 

Users performed significantly better in simulated UAS flying compared to live 
[t(44) = 6.961, p = 0.000000013], and made similar errors in simulation as com-
pared to live [t(44) = −1.539, p = 0.131] (Figure 3). 

Average, session-level physiological and behavioral data is shown in Table 2. 
Features were extracted from individual, baseline-normalized physiological and 
behavioral data and used to train an algorithm of engagement state. 

All data used to train the model was labeled either as high (sim or live) or low 
(video) engagement. This data was then preprocessed to ensure the model: 1) 
generalizes across individuals and 2) varies on a time scale useful for learning in-
terventions. This was accomplished by training the model with feature data from 
45 different subjects and breaking the data into 30 second windows. A logistic 
regression model with both behavioral (eye tracker) and physiological (Equivit-
al) features was capable of predicting whether a 30 second physiological data set 
 
Table 2. Average (SD) session level physiological and behavioral (eye-tracking) data from 
the cohort. 

 Baseline Video Simulation Live 

HR (bpm) 86.03 (14.98) 90.86 (12.60) 90.22 (19.32) 92.88 (17.52) 

QRS dur (ms) 125.65 (13.08) 124.52 (14.15) 129.64 (14.85) 137.43 (15.83) 

QRS sum (ms) 126.12 (13.36) 123.18 (13.92) 129.82 (14.79) 138.92 (16.32) 

LF/HF HRV 4.45 (3.94) 5.65 (4.69) 4.39 (3.37) 3.60 (2.64) 

EDA (µS) 6.70 (4.57) 6.95 (5.56) 7.24 (4.40) 7.44 (4.44) 

RR (bpm) 18.95 (3.35) 16.45 (6.11) 17.89 (3.47) 17.03 (3.30) 

SMA (mg) 19.00 (1.38) 19.08 (1.63) 19.02 (1.41) 19.33 (1.41) 

Fixation Number  16.13 (3.61) 7.58 (2.23)  

Fixation Duration (s)  2.09 (1.18) 6.98 (4.18)  

 

 
Figure 3. Boxplots overlaid with raw data of performance in simulated (white) and live 
(gray) UAS flight. *p < 0.05. 
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came from a high or low engagement condition with a training accuracy of 79% 
and a testing accuracy of 85% (Figure 4). Parameters included fixation number 
(w = 0.002), EDA (w = 0.063), fixation duration (w = −0.030), QRS duration (w 
= −0.205), and heart rate (w = 1.125), with an intercept of 0.0164. An additional 
logistic regression classifier was developed without eye-tracking features to ac-
count for situations when eye-tracking is not available, and was capable of pre-
dicting whether a 30 second physiological data set came from the high or low 
engagement condition with a training accuracy of 76% and a testing accuracy of 
81% (Figure 4). Parameters included heart rate (w = −0.021), QRS sum (w = 
0.041); LF/HF HRV (w = 0.074, SMA (w = 0.047), EDA (w = 0.050), and respira-
tion rate (w = 0.091), with an intercept of 7.163. 

4. Discussion 

The ability to measure and ultimately optimize learner engagement is considered 
to be one of the most effective countermeasures in combating student dropout, 
disaffection, and low performance [11]. Our results suggest that utilizing low 
non-invasive physiological measures that capture electrodermal and cardiovas-
cular measures can provide a window into the real-time state of learner engage-
ment. As predicted, results indicated that learner engagement levels significantly 
increased with increasing levels of interactivity, challenge, goal clarity, feedback 
and immersion. In addition, features derived from physiological sensing and 
eye-tracking equipment were able to successfully classify engagement with high 
accuracy.  

In the current effort we developed a two class model of engagement using phy-
siological and behavioral features, which classified engagement as high or low, 
with 85% accuracy with eye-tracking features included, and 81% accuracy with-
out eye-tracking features. Both models are based on significant differences observed 
in self-reported engagement, user physiology, and task performance between 
 

 
Figure 4. Logistic regression model accuracy. The model average accuracy was 81% 
without eyetracking features, and 85% with eyetracking features. 
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video, simulated, and live environments. Both simulated and live environments 
indicating significant increases in engagement as compared to video, and were 
labeled as high engagement in data modeling. Similar levels of accuracy have been 
reported recently in measuring engagement using features derived from weara-
ble physiological sensors, touchscreens, and optical biomechanics [8], or using 
EDA only [11]. Given the physiological and behavioral differences observed be-
tween scenarios of increasing engagement, we leveraged a random forest clas-
sifier to select classifier features. As compared to other feature selection tech-
niques, random forest approaches have shown the highest accuracy in modeling 
user state including engagement [8].  

The engagement classifier reported here is associated with features derived 
from physiological and behavioral data. Previous research has indicated that vari-
ous physiological metrics are associated with engagement, including features de-
rived from EDA [23] [24] [25], ECG [24] [26], and from eye-tracking [27]. Our 
results suggest a decrease in heart rate and an increase in HRV occurs during 
increasingly engaging tasks, likely associated with increasing parasympathetic 
activity [24]. Our results also indicate a decrease in fixations and increasing fixa-
tion duration with increasing engagement. Such results agree with theory that po-
sits that individuals will direct visual attention to salient images under engaging 
conditions because they are thinking more deeply about those images [27]. 

Individuals reported increasing levels of engagement across video, simulation 
and live tasks, as measured using the FSS. Underlying these results are aspects of 
interactivity, task challenge, goal clarity, feedback and immersion. Interactivity 
has been shown to impact engagement by providing the individual with control 
in the learning task through technology, leading to increased learner motivation, 
interest, and learning gains [28] [29]. The level of challenge associated with a 
learning task is related to engagement as the presence, level, and appropriateness 
of a challenge can lead to intrinsic motivation, flow and micro-engagement [30] 
[31] [32]. However, the level of challenge must be appropriate to an individual’s 
capabilities to increase engagement. A task where the challenge is too advanced 
leads to a stress response which can reduce the motivation of the individual [26], 
[33] and reduce motor and cognitive performance [34]. If a task is not challeng-
ing enough or too easy it may produce apathy and a reduced attention due to a 
lack of motivation [33] [35]. An important facet in challenge is that as the indi-
vidual learns, the challenge generally becomes easier, thus requiring the challenge 
to grow with the individual’s progress [36] [37] [38]. Increasing challenge be-
tween the simulation and live flight tasks was associated with decreasing perfor-
mance. Further, engagement levels can also be positively influenced by presenting 
clear goals and performance feedback as these elements can improve learner mo-
tivation and strategy use [39]. Finally, immersion has been shown to influence 
engagement through increased interest and motivation towards learning tasks, ul-
timately leading to higher engagement [40] [41]. 

In the current effort, we were able to achieve high accuracy classification of 
engagement similar to recent reports [8] [11]. However, results of this study and 
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the implications for use in educational settings should be interpreted with cau-
tion. The inclusion of eye-tracking features in this modeling effort are difficult to 
scale, and are associated with necessary calibration and restriction of user head 
movements [10]. Similarly, physiological sensors add cost, are difficult to scale, 
have varying levels of data quality [42], and may be associated with privacy is-
sues [43].  

In summary, this research demonstrated the capability of monitoring, and as-
sessing individualized learner engagement across learning situations and con-
texts using physiological and behavioral inputs. Application of such an approach 
can facilitate to support them in determining where they need to adjust training 
to optimize learner engagement.  
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