

Most Intense X-Ray Lines of the Helium Isoelectronic Sequence for Plasmas Diagnostic

Ibrahima Sakho*

Department of Experimental Sciences, UFR Sciences and Technologies, University of Thies, Thies, Senegal Email: *aminafatima_sakho@yahoo.fr

How to cite this paper: Sakho, I. (2020) Most Intense X-Ray Lines of the Helium Isoelectronic Sequence for Plasmas Diagnostic. Journal of Modern Physics, 11, 487-501.

https://doi.org/10.4236/jmp.2020.114031

Received: January 23, 2020 Accepted: March 23, 2020 Published: March 26, 2020

Copyright © 2020 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/ •

Open Access

Abstract

We report accurate wavelengths for the three most intense lines (resonance line: 1s² ¹S0 - 1s2p ¹P1, intercombination line: 1s² ¹S0 - 1s2p ³P1 and forbidden line: 1s² ¹S0 - 1s2s ³S1) along with wavelengths for the 1s² ¹S0 - 1s*n*p¹P1 and ${}^{1}SO - 1snp{}^{3}P2$ ($2 \le n \le 25$) transitions in He-like systems (Z = 2 - 13). The first spectral lines that belong to the above transitions are established in the framework of the Screening Constant per Unit Nuclear Charge method. The results obtained agree excellently with various experimental and theoretical literature data. The uncertainties in wavelengths between the present calculations and the available literature data are less than 0.004 Å. A host of new data listed in this paper may be of interest in astrophysical and laboratory plasmas diagnostic.

Keywords

He-Like Systems, Semi-Empirical, Screening Constant Per Unit Nuclear Charge, Excited States, X-Ray Spectra

1. Introduction

The helium-like isoelectronic series emit strong X-ray wavelengths. The most intense lines of these systems are the resonance line designated by ω (also labelled r: $1s^{2} {}^{1}S_{0} - 1s^{2}p^{1}P_{1}$, the intercombination lines (x + y) (or \dot{r} : $1s^{2} {}^{1}S_{0}$ - $1s2p^{3}P_{2,1}$) and the forbidden line z (or f. $1s^{2} {}^{1}S_{0} - 1s2s {}^{3}S_{1}$). These three lines correspond to the transitions between the n = 2 excited shell and the n = 1 ground state shell. The determination of these lines is of great interest because the line ratios fli and (f + i)/r provided respectively electrons density $(n_e \sim 10^8 - 10^{13})$ cm⁻³) and electrons temperature ($T_e \sim 1 - 10$ MK) as first shown by Gabriel and Jordan [1] and are widely used for collisional solar plasma diagnostics [1] [2] [3]. On the other hand, these line ratios enable also to determine the prevailed ionization processes (photo-ionization and/or collisional ionization) in the plasma [4] [5] [6]. Traditionally, He-like ions *fli* line ratios have been used to derive electron densities of X-ray line-emitting regions since the populations of the 2³P level are controlled by collisional excitation from the 2³S level [1]. At low density, the n = 2 states are populated by electron excitation and then decay radiatively. Then, the relative intensities of the three lines are independent of the density [7]. Above the critical density (n_{crit}) : $(n_{crit} C \sim A, C being the rate coefficient$ for collisional excitation $2^3S \rightarrow 2^3P$ and A denotes the radiative transition prob*ability of* $2^{3}S \rightarrow 1^{1}S$), the $2^{3}S$ upper level of the forbidden line becomes to be depleted by collision to the 2³P upper levels of the intercombination line. As a result, when the electron density increases, the intensity of the forbidden line decreases strongly whereas that of the intercombination line increases. However, in the case of a strong UV radiation, the photo-excitation $2^{3}S \rightarrow 2^{3}P$ becomes no negligible. Subsequently, the ratio (f/i) of the forbidden line on the intercombination line is no longer an electron density diagnostic. As concern the ratio (f +I/r, it is sensitive to electron temperature as the dependence of the collisional excitation rates with the temperature for the resonance line is not the same for the forbidden and intercombination lines. In short, for plasma dominated by photo-ionization and recombination, the forbidden line (or the intercombination line at high density) becomes much stronger than the resonance line. In the case of plasma dominated by collisional ionization and excitation, the resonance line is stronger or comparable to the forbidden line and the intercombination line [4]. The following considerations indicate that the determination of the most intensive lines of Helium-like ions in the X-ray range is of great interest in laboratory and astrophysical plasma diagnostics.

On the experimental side, high-precision measurements of the energy difference between S and P levels in the helium isoelectronic series were made three decades ago. Robinson [7] presents measurements of the $1s^{2} {}^{1}S_{0} - 1snp {}^{1}P_{1}$ series of the Helium isoelectronic sequence for Be III, B IV and C V. Since that time, many experiments have been improved. Twelve lines in the region 20 - 100 Å belonging to the resonance series of Be III, B IV, C V and O VII are remeasured by Svensson [8] using spectrograms. Beiersdorfer et al. [9] use the tokamak plasmas from the Princeton Large Torus (PLT) high-resolution Johann spectrometer to report the $n = 2 \rightarrow 1$ X-ray transitions of Helium-like potassium, scandium, titanium, vanadium, chromium, and iron (Z = 19 - 26) along with wavelengths belonging to the $1s^{2} {}^{1}S_{0} - 1snp {}^{1}P_{1}$ (n = 3 - 5) transitions. Furthermore, Engtröm and Litzén [10] generate spectra of C, N and O simultaneously by focusing 1 GW laser pulses on targets made of either ammonium hydrogen carbonate or ammonium oxalate and then determine the wavelengths of the $1s^{2}$ ¹S - 1snp ¹P (n = 2 - 4) resonance lines in N VI and O VII (17 - 30 ÅÅ) with uncertainties ranging from 0.2 to 0.7 mÅÅ. Bartnik et al. [11] measure the wavelengths of the 1snp ¹P - $1s^2$ ¹S (n = 4 -10) transitions in He-like O VII in laser-produced gas puff plasmas with an accuracy measurement ranging between (1.5 - 3.0 mÅ).

On the theoretical side, many techniques are presented. Acaad et al. [12] con-

struct wave function expanded in a triple series of Laguerre polynomials of the perimertric coordinates to study the S and P states of the helium isoelectronic sequence and report nonrelativistic wavelengths and total wavelengths including mass polarization relativistic and, the Lamb shift corrections for Z = 2 - 9 belonging to the 1snp ¹P - $1s^{21}S(n = 2 - 5)$ transitions. In addition, Safronova *et al.* [13] apply the MZ code through a perturbation theory based on hydrogen-like functions to compute wavelengths of highly charged He-like ions (Z = 6 - 54) for both satellite lines $(1s2l nl - 1s^2 n' l, n, n' = 2, 3)$ and $(1snp^{-1, 3}P - 1s^2, n = 2, 3)$ and $1s2s^{1,3}S - 1s^2$) transitions. Additionally, the plasma simulation code CLOUDY is used by Porter [14] to present wavelengths of the UV, intercombination, forbidden, and resonance transitions of He-like ions for Z = 6 - 14 and for Z = 16, 18, 20, and 26. But, as far as we know, the wavelengths cannot be directly determined within a single analytical formula for a whole members of He-like ions using one of the preceding method or one of the other existing computational techniques. Then, analytical spectral lines in two-electron systems such as the Balmer or the Lyman spectral lines of the hydrogen-like systems are not yet established. In this paper, we intend to present analytical spectral lines belonging to the resonance line: $1s^{2} {}^{1}S_{0}$ - $1s2p {}^{1}P_{1}$ and intercombination line: $1s^{2} {}^{1}S_{0}$ - 1s2p ${}^{3}P_{2,1}$ along the 1s² ${}^{1}S_{0}$ - 1sm ${}^{1}P_{1}$ ($n \le 10$) transitions in the helium isoelectronic sequence. In our study, we use the Screening Constant per Unit Nuclear Charge (SCUNC) method suitable in the analysis of atomic spectra [15] [16]. All the results obtained in the present work compared very well to the available experimental and theoretical literature data. A host of data listed in this paper may be of interest in astrophysical and laboratory plasmas diagnostic.

In section 2, we present the theoretical procedure adopted in this work. In section 3, the presentation and the discussion of the results are made. A comparison of our results with available experimental and theoretical results is also made.

2. Theory

2.1. Brief Description of the SCUNC Formalism

In the framework of Screening Constant per Unit Nuclear Charge formalism, total energy of $(N\ell, n\ell')^{2S+1}L^{\pi}$ excited states are expressed in the form (in rydberg units)

$$E\left(N\ell n\ell'; {}^{2S+1}L^{\pi}\right) = -Z^{2}\left(\frac{1}{N^{2}} + \frac{1}{n^{2}}\left[1 - \beta\left(N\ell n\ell'; {}^{2S+1}L^{\pi}; Z\right)\right]^{2}\right).$$
(1)

In this equation, the principal quantum numbers N and n, are respectively for the inner and the outer electron of He-isoelectronic series. In this equation, the β -parameters are screening constant by unit nuclear charge expanded in inverse powers of Z and given by

$$\beta\left(N\ell n\ell'; {}^{2S+1}L^{\pi}; Z\right) = \sum_{k=1}^{q} f_k \times \left(\frac{1}{Z}\right)^k.$$
⁽²⁾

where $f_k = f_k \left(N \ell n \ell'; {}^{2S+1}L^{\pi} \right)$ are parameters to be evaluated empirically.

2.2. Energies for the Ground State

For the ground state, Equations (1) and (2) give

$$E\left(1s^{2}; {}^{1}S_{0}\right) = -Z^{2}\left(1 + \left\{1 - \frac{f_{1}}{Z} - \frac{f_{2}}{Z^{2}} - \frac{f_{3}}{Z^{3}}\right\}^{2}\right).$$
 (3a)

Using the experimental total energy of He I, Li II and Be III respectively (in eV) -79.01 [17], -198.09 [18] and -371.60 [18], the screening constants in Equation (4) are evaluated by use of the infinite rydberg energy 1 Ryd = 13.605698 eV. We find then

$$E\left(1s^{2}; {}^{1}S_{0}\right) = -Z^{2}\left(1 + \left\{1 - \frac{0.625085938}{Z} - \frac{0.031315676}{Z^{2}} - \frac{0.059849712}{Z^{3}}\right\}^{2}\right). (3b)$$

2.3. Spectral Lines of the 1¹S₀ - 1s2p ¹P₁ Resonance Transition

During the $1s^{2} {}^{1}S_{0}$ - $1s2p {}^{1,3}P_{1}$ transitions, the energy of the system varies as

$$\Delta E = \frac{hc}{\lambda} = E\left(1s2p; {}^{1,3}P_1\right) - E\left(1s^2; {}^{1}S_0\right).$$
(4)

Using Equations (1) and (3b), we obtain from Equation (4) For $2 \le Z \le 15$

$$\frac{hc}{\lambda} = Z^{2} \left(1 + \left\{ 1 - \frac{0.625085938}{Z} - \frac{0.031315676}{Z^{2}} - \frac{0.059849712}{Z^{3}} \right\}^{2} \right) - Z^{2} \left(1 + \frac{1}{4} \left\{ 1 - \frac{f_{1}}{Z} - \frac{f_{2} \times (Z - Z_{0})}{Z^{2}} - \frac{f_{1}^{2} \times (Z - Z_{0})^{2} \times (Z - Z_{0}')}{Z^{3}} - \frac{f_{1}^{2} \times (Z - Z_{0})^{2} \times (Z - Z_{0}')}{Z^{3}} - \frac{f_{1}^{2} \times (Z - Z_{0})^{2} \times (Z - Z_{0}')}{Z^{5}} \right\}^{2} \right)$$
(5a)

In these equations, Z_0 and Z'_0 denote the nuclear charge of the helium-like systems used in the empirical determination of the f'_i —screening constants. On the basis of $h = 6.626276 \times 10^{-34} \text{ J} \cdot \text{s}$, $c = 2.99792458 \times 10^8 \text{ m/s}$ and $e = 1.602189 \times 10^{-19} \text{ C}$ and using for $1s^2$ ¹S₀ - $1s2p^3P_1$ the experimental wavelengths of He I ($Z_0 = 2$) and that of Li II ($Z'_0 = 3$) respectively 584.3339 Å [19] and 199.280 Å [7], Equation (5a) gives $f_1 = 1.004778731$ and $f_2 = 0.026277861$. We obtain then explicitly

$$\frac{1}{\lambda} = Z^{2} \left(1 + \left\{ 1 - \frac{0.625085938}{Z} - \frac{0.031315676}{Z^{2}} - \frac{0.059849712}{Z^{3}} \right\}^{2} \right) - Z^{2} \left(1 + \frac{1}{4} \left\{ 1 - 1.004778731 \frac{1}{Z} - 0.026277861 \frac{Z-2}{Z^{2}} - 0.000690525 \frac{(Z-2)^{2} \times (Z-3)}{Z^{3}} - 0.000690525 \frac{(Z-2)^{2} \times (Z-3)^{2}}{Z^{4}} \right]^{2} \right)$$
(5b)
$$- 0.026277861 \frac{(Z-2)^{2} \times (Z-3)^{2}}{Z^{5}} \right\}^{2} \times 10973644.9$$

DOI: 10.4236/jmp.2020.114031

In Equation (5b), wavelengths are expressed in meters (*m*) and the infinite rydberg energy 1 Ryd = 13.605698 eV is used along with 1 eV = 1.602189×10^{-19} J. So Ryd/*hc* = 10973644.9 (*m*).

2.4. Spectral Lines of the 1s² ¹S₀ - 1s2p³P₁ Intercombination Transition

Using Equations (1) and (3b), Equation (4) yields for the $1s^{2} {}^{1}S_{0} - 1s2p {}^{3}P_{1}$ intercombination transition

$$\frac{hc}{\lambda} = Z^{2} \left(1 + \left\{ 1 - \frac{0.625085938}{Z} - \frac{0.031315676}{Z^{2}} - \frac{0.059849712}{Z^{3}} \right\}^{2} \right) - Z^{2} \left(1 + \frac{1}{4} \left\{ 1 - \frac{f_{1}''}{Z} - \frac{f_{2}'' \times (Z - Z_{0})}{Z^{2}} - \frac{f_{2}''^{2} \times (Z - Z_{0}) \times (Z - Z_{0}')^{2}}{Z^{3}} - \frac{f_{2}''^{2} \times (Z - Z_{0})^{2} \times (Z - Z_{0}')^{2}}{Z^{3}} - \frac{f_{2}''^{2} \times (Z - Z_{0})^{2} \times (Z - Z_{0}')^{2}}{Z^{5}} - \frac{f_{2}''^{2} \times (Z - Z_{0})^{2} \times (Z - Z_{0}')^{2}}{Z^{5}} \right\}^{2} \right)$$
(6a)

Here again, Z_0 and Z'_0 denote the nuclear charge of the helium-like systems used in the empirical determination of the f''_i —parameters. For $1s^2 {}^{1}S_0 - 1s2p^{3}P_1$, the experimental wavelengths of He I ($Z_0 = 2$) and that of B IV ($Z'_0 = 5$) are respectively equal to 591.4121Å [19] and 61.0880 Å [9] as quoted in Ref. [12], we obtain from Equation (6a) $f''_1 = 0.967951498$ and $f_2 = -0.06781546$. Equation (6a) becomes then

$$\frac{1}{\lambda} = Z^{2} \left(1 + \left\{ 1 - \frac{0.625085938}{Z} - \frac{0.031315676}{Z^{2}} - \frac{0.059849712}{Z^{3}} \right\}^{2} \right) - Z^{2} \left(1 + \frac{1}{4} \left\{ 1 - 0.967951498 \frac{1}{Z} + 0.06781546 \frac{Z - 2}{Z^{2}} - 0.004598936 \frac{(Z - 2) \times (Z - 5)^{2}}{Z^{3}} - 0.004598936 \frac{(Z - 2)^{2} \times (Z - 5)^{2}}{Z^{4}} - 0.004598936 \frac{(Z - 2)^{2} \times (Z - 5)^{3}}{Z^{5}} \right\}^{2} \right) \times 10973644.9$$
(6b)

2.5. Spectral Lines of the 1s² ¹S₀ - 1s2s ³S₁ Forbidden Transitions

For the $1s^{2} {}^{1}S_{0}$ - $1s2s {}^{3}S_{1}$ forbidden transitions, the spectral lines are given by

$$\frac{hc}{\lambda} = Z^{2} \left(1 + \left\{ 1 - \frac{0.625085938}{Z} - \frac{0.031315676}{Z^{2}} - \frac{0.059849712}{Z^{3}} \right\}^{2} \right) - Z^{2} \left(1 + \frac{1}{4} \left\{ 1 - \frac{f_{1}''}{Z} - \frac{f_{2}'' \times (Z - Z_{0})}{Z^{2}} - \frac{f_{2}''^{2} \times (Z - Z_{0}) \times (Z - Z_{0}')}{Z^{3}} - \frac{f_{2}''^{2} \times (Z - Z_{0})^{2} \times (Z - Z_{0}')}{Z^{4}} - \frac{f_{2}''^{2} \times (Z - Z_{0})^{2} \times (Z - Z_{0}')^{3}}{Z^{5}} - \frac{f_{2}''^{2} \times (Z - Z_{0}) \times (Z - Z_{0}')^{3}}{Z^{6}} \right\}^{2} \right)$$

$$(7a)$$

For $1s^2 {}^1S_0 - 1s2s {}^3S_1$, the experimental wavelengths from NIST [20] for He I ($Z_0 = 2$) and for Li II ($Z'_0 = 3$) are respectively equal to 625.563 Å and 210.069 Å. Equation (7a) provides then $f''_1 = 0.816109425$ and $f''_2 = -0.079252785$. Equation (7a) becomes explicitly

$$\frac{hc}{\lambda} = Z^{2} \left(1 + \left\{ 1 - \frac{0.625085938}{Z} - \frac{0.031315676}{Z^{2}} - \frac{0.059849712}{Z^{3}} \right\}^{2} \right) - Z^{2} \left(1 + \frac{1}{4} \left\{ 1 - \frac{0.816109425}{Z} - \frac{0.079252785 \times (Z-2)}{Z^{2}} - \frac{0.006281003 \times (Z-2) \times (Z-3)}{Z^{3}} - \frac{0.006281003 \times (Z-2) \times (Z-3)}{Z^{3}} \right) \right]$$
(7b)
$$- \frac{0.006281003 \times (Z-2)^{2} \times (Z-3)^{2}}{Z^{4}} - \frac{0.006281003 \times (Z-2)^{2} \times (Z-3)^{3}}{Z^{5}} - \frac{0.006281003 \times (Z-2) \times (Z-3)^{3}}{Z^{6}} \right\}^{2} \right) \times 10973644.9$$

2.6. Spectral Lines of the 1s² ¹S₀ - 1snp¹P₁ Transitions

Following the same reasoning above, we express from Equations (1) and (2) total energies belonging to the $1snp^{1}P_{1}$ levels

$$E(1snp; {}^{1}P_{1}) = -Z^{2}\left(1 + \frac{1}{n^{2}}\left\{1 - \frac{f_{1}}{Z(n-1)} - \frac{f_{2}}{Z} - \frac{f_{3} \times (Z - Z_{0})}{Z^{2}n^{2}} - \frac{f_{3} \times (Z - Z_{0})^{2} \times (Z - Z_{0}')}{Z^{3}} - \frac{f_{3} \times (Z - Z_{0})^{2} \times (Z - Z_{0}')^{2}}{Z^{4}}\right\}^{2}\right)$$
(8a)

For the $1s^2 {}^1S_0 - 1snp^1P_1$ transitions, we get

$$\frac{hc}{\lambda} = Z^{2} \left(1 + \left\{ 1 - \frac{0.625085938}{Z} - \frac{0.031315676}{Z^{2}} - \frac{0.059849712}{Z^{3}} \right\}^{2} \right) - Z^{2} \left(1 + \frac{1}{n^{2}} \left\{ 1 - \frac{f_{1}}{Z(n-1)} - \frac{f_{2}}{Z} - \frac{f_{3} \times (Z - Z_{0})}{Z^{2}n^{2}} - \frac{f_{3} \times (Z - Z_{0})}{Z^{2}n^{2}} - \frac{f_{3} \times (Z - Z_{0})^{2} \times (Z - Z_{0})^{2}}{Z^{3}} \right)$$
(8b)
$$- \frac{f_{3} \times (Z - Z_{0})^{2} \times (Z - Z_{0}')}{Z^{3}} - \frac{f_{3} \times (Z - Z_{0})^{2} \times (Z - Z_{0}')^{2}}{Z^{4}} \right\}^{2}$$

For $1s^2 {}^{1}S_0 - 1s3p {}^{3}P_1$ and $1s^2 {}^{1}S_0 - 1s4p {}^{3}P_1$ transitions, the corresponding experimental wavelengths of Li II ($Z_0 = 3$) are respectively equal to 178.014 Å and 171.575 Å [7]. In addition, for Be III ($Z'_0 = 4$), the wavelength for to the $1s^2 {}^{1}S_0 - 1s3p {}^{3}P_1$ transition is 88.314 Å [7]. Using these wavelengths, we get from Equation (8b) $f_1 = 0.011679205$, $f_2 = 1.003675341$, and $f_3 = 0.008177868$. The spectral lines belonging to the $1s^2 {}^{1}S_0 - 1snp {}^{1}P_1$ transitions is then in the shape.

$$\frac{1}{\lambda} = Z^{2} \left(1 + \left\{ 1 - \frac{0.625085938}{Z} - \frac{0.031315676}{Z^{2}} - \frac{0.059849712}{Z^{3}} \right\}^{2} \right) - Z^{2} \left(1 + \frac{1}{n^{2}} \left\{ 1 - 0.011679205 \frac{1}{Z(n-1)} - 1.003675341 \frac{1}{Z} - 0.008177868 \frac{Z-3}{Z^{2}n^{2}} - 0.008177868 \frac{(Z-3)^{2} \times (Z-4)}{Z^{3}} - 0.008177868 \frac{(Z-3)^{2} \times (Z-4)^{2}}{Z^{4}} \right\}^{2} \right) \times 10973644.9$$
(8c)

Before presenting and discussing the results obtained in this work, let us first move on explaining how electron-electrons and relativistic effects are accounted in the present SCUNC formalism. As mentioned previously [16] in the framework of the SCUNC formalism, all the relativistic corrections in many electron systems are incorporated in the β -parameters. To enlighten this point, let us move on considering the main relativistic terms in the Hamiltonian operator of Q-electron systems. For Q-electron systems, the Hamiltonian can be expressed as follows

$$H = H_0 + W . (9)$$

In this expression, H_0 denotes the nonrelativistic Hamiltonian and W is the sum of the perturbation operators which includes mainly correction to kinetic energy ($W_{\rm kin}$), the Darwin term ($W_{\rm D}$), mass polarization ($W_{\rm M}$), spin-orbit corrections ($W_{\rm so}$), spin-other orbit corrections ($W_{\rm so}$) and spin-spin corrections ($W_{\rm ss}$). For Q-electron systems, the non-relativistic Hamiltonian and the perturbation operators are explicitly the following

$$\begin{split} H_{0} &= \sum_{i=1}^{Q} \left[-\frac{1}{2} \nabla_{i}^{2} - \frac{Z}{r_{i}} \right] + \sum_{\substack{i,j=1\\i\neq j}}^{Q} \frac{1}{r_{ij}}; \quad W_{kin} = -\frac{\alpha^{2}}{8} \sum_{i=1}^{Q} p_{i}^{4}; \quad W_{D} = \frac{3\pi\alpha^{2}}{2} \sum_{i=1}^{Q} \delta(r_{i}) \,. \\ W_{M} &= -\frac{1}{M} \sum_{\substack{i,j=1\\i\neq j}}^{Q} \nabla_{i} \cdot \nabla_{j}; \quad W_{so} = \frac{Z}{2c^{2}} \sum_{i=1}^{Q} \frac{I_{i} \cdot s_{i}}{r_{i}^{3}}; \\ W_{soo} &= -\frac{1}{2c^{2}} \sum_{\substack{i,j=1\\i\neq j}}^{Q} \left[\frac{1}{r_{ij}^{3}} (r_{i} - r_{j}) \times p_{i} \right] \cdot (s_{i} + 2s_{j}) \,. \\ W_{ss} &= \frac{1}{c^{2}} \sum_{\substack{i,j=1\\i\neq j}}^{Q} \frac{1}{r_{ij}^{3}} \left[s_{i} \cdot s_{j} - \frac{3(s_{i} \cdot r_{ij})(s_{j} \cdot r_{ij})}{r_{ij}^{2}} \right] \,. \end{split}$$

In these expressions, α denotes the fine structure constant and M is the nuclear mass of the Q-electron systems. The energy value of the Hamiltonian (9a) is in the form

$$E = E_0 + w . (9b)$$

with

$$w = \left\langle W_{\rm kin} \right\rangle + \left\langle W_{\rm D} \right\rangle + \left\langle W_{\rm M} \right\rangle + \left\langle W_{\rm so} \right\rangle + \left\langle W_{\rm soo} \right\rangle + \left\langle W_{\rm so} \right\rangle. \tag{9c}$$

For a-given Nl_1 , nl_2 configuration of He-like ions where N, n, and l_1 , l_2 , are respectively principal and orbital quantum numbers, the total energy is given by

$$E = -\frac{Z^{2}}{N^{2}} - \frac{Z^{2}}{n^{2}} \Big[1 - \beta \Big(N l_{1} n l_{2}; {}^{2S+1} L^{\pi}; Z \Big) \Big]^{2}.$$
(9d)

Developing Equation (9d), we obtain

$$E = -\frac{Z^2}{N^2} - \frac{Z^2}{n^2} + \frac{Z^2}{n^2} \beta \left(Nl_1 n l_2; {}^{2S+1}L^{\pi}; Z \right) \left[2 - \beta \left(Nl_1 n l_2; {}^{2S+1}L^{\pi}; Z \right) \right].$$
(9e)

Equation (9e) can be rewritten in the form

$$E = -\frac{Z^2}{N^2} - \frac{Z^2}{n^2} + \sum_{i=1}^2 \frac{Z^2}{v_i^2} \beta_i \times [2 - \beta_i].$$

This equation can be expressed in the same shape than Equation (9b)

$$E = E_0 + w$$

where

$$\begin{cases} E_0 = -\frac{Z^2}{N^2} - \frac{Z^2}{n^2} \\ w = \sum_{i=1}^2 \frac{Z^2}{v_i^2} \beta_i \times [2 - \beta_i] \end{cases}$$
(10)

Using (9c) and the last equation in (10), we find

$$\sum_{i=1}^{2} \frac{Z^{2}}{v_{i}^{2}} \beta_{i} \times \left[2 - \beta_{i}\right] = \langle W_{\text{kin}} \rangle + \langle W_{\text{D}} \rangle + \langle W_{\text{M}} \rangle + \langle W_{\text{so}} \rangle + \langle W_{\text{soo}} \rangle + \langle W_{\text{sso}} \rangle.$$
(11)

Equation (11) indicates clearly that, in the framework of the SCUNC-formalism, all the relativistic corrections are incorporated in the β -screening constants per unit nuclear charge. In the structure of the independent particles model disregarding all the relativistic effects, total energy is given by E_0 . Subsequently w = 0. This involves automatically $\beta = 0$. Then, all relativistic effects are accounted implicitly in general Equation (1) via the β -parameters expanded in inverse powers of Z as shown by Equation (2) where the $f_k = f_k \left(Nlnl'; {}^{2S+1}L^{\pi} \right)$ —screening constants are evaluated empirically using experimental data incorporating all the relativistic effects and all electrons-electrons effects in many electron systems.

3. Results and Discussions

The present SCUNC wavelengths predictions for the wavelengths belonging to the $1s^2 {}^{1}S_0 \rightarrow 1snp {}^{1}P1$ ($3 \le n \le 13$) transitions in He-like (Z = 3 - 38) ions are quoted in **Table 1**. **Table 2** Presents a comparison between theoretical and experimental wavelengths of the $1 {}^{1}S_0 \rightarrow np {}^{1}P_1$ ($1s^2 {}^{1}S_0 \rightarrow 1snp {}^{1}P_1$) transitions of helium-like ions up to Z = 8. The present SCUNC calculations values, are compared to the experimental data of Robinson [7], Svensson [8], Bartnik *et al.* [11] and to the experimental data of Engtröm and Litzén [10]. For the resonance $1 {}^{1}S_0 \rightarrow 2p {}^{1}P_1$ transition, it is seen that the current SCUNC results compared very well to the experimental values. Here, the $\Delta \lambda / \lambda$ percentage deviations with

able 1. Present wavelengths (λ , ir	Å) of tl	the $1s^2 {}^1S_0 \rightarrow 1s$	$np^{1}P$	transitions in He-like	Z = 3 - 15) ions.
---	----------	-----------------------------------	-----------	------------------------	------------	---------

1S- <i>n</i> ¹ P	Li II λ	Be III λ	Β IV λ	CV λ	Ν VI λ	O VII λ	F VIII λ	Ne IX λ	Na X λ	Mg XI λ	Al XII λ	Si XIII λ	Ρ XIV λ
1S-3 ¹ P	178.0140	88.3140	52.6852	34.9749	24.9012	18.6283	14.4588	11.5474	9.4344	7.8524	6.6374	5.6841	4.9222
$1S-4^{1}P$	171.5750	84.7502	50.4334	33.4271	23.7736	17.7709	13.7853	11.5474	9.4344	7.8524	6.6374	5.6841	4.9222
1S-5 ¹ P	168.7422	83.1934	49.4536	32.7553	23.2850	17.3999	13.4942	11.0046	8.9877	7.4785	6.3199	5.4110	4.6850
1S-6 ¹ P	167.2401	82.3706	48.9368	32.4014	23.0278	17.2047	13.348	10.7701	8.7949	7.3171	6.1829	5.2933	4.5827
1S-7 ¹ P	166.3466	81.8821	48.6302	32.1916	22.8754	17.0891	13.2504	10.5738	8.6335	7.1821	6.0683	5.1948	4.4972
1S-8 ¹ P	165.7714	81.5679	48.4332	32.0568	22.7775	17.0148	13.1922	10.5270	8.5950	7.1499	6.0409	5.1713	4.4768
1S-9 ¹ P	165.3792	81.3539	48.2990	31.9651	22.789	16.9643	13.1525	10.4951	8.5688	7.1280	6.0223	5.1553	4.4629
$1S-10^{1}P$	165.0997	81.2015	48.2035	31.8997	22.6635	16.9284	13.1243	10.4724	8.5501	7.1124	6.0091	5.1440	4.4531
$1S-11^{1}P$	164.8934	81.0890	48.1331	31.8516	22.6285	16.9018	13.836	10.4557	8.5364	7.1009	5.9993	5.1356	4.4458
$1S-12^{1}P$	1647369	81.0037	48.0796	31.8150	22.6020	16.8817	13.0878	10.4430	8.5259	7.0922	5.9919	5.1292	4.4403
1S-13 ¹ P	164.6153	80.9374	48.0381	31.7867	22.5814	16.8661	13.0756	10.4331	8.5178	7.0854	5.9862	5.1243	4.4360
$1S-14^{1}P$	164.5187	80.8849	48.0052	31.7642	22.5651	16.8537	13.0659	10.4253	8.5114	7.0801	5.9816	5.1204	4.4326
1S-15 ¹ P	164.4410	80.8425	47.9787	31.7461	22.5519	16.8438	13.0580	10.4190	8.5063	7.0757	5.9780	5.1172	4.4298
1S-16 ¹ P	164.3775	80.8079	47.9570	31.7312	22.5412	16.8356	13.0517	10.4139	8.5020	7.0722	5.9750	5.1147	4.4276
$1S-17^{1}P$	164.3248	80.7793	47.9391	31.7190	22.5323	16.8289	13.0464	10.4096	8.4985	7.0693	5.9725	5.1125	4.4258
$1S-18^{1}P$	164.2808	80.7553	47.9240	31.7087	22.5248	16.8232	13.0419	10.4061	8.4956	7.0668	5.9704	5.1107	4.4242
1S-19 ¹ P	164.2435	80.7349	47.9113	31.7000	22.5185	16.8184	13.0382	10.4030	8.4931	7.0648	5.9687	5.1092	4.4229
$1S-20^{1}P$	164.2117	80.7176	47.9005	31.6926	22.5131	16.8144	13.0350	10.4005	8.4910	7.0630	5.9672	5.1079	4.4218
$1S-21^{1}P$	164.1843	80.7027	47.8911	31.6862	22.5085	16.8109	13.0322	10.3983	8.4892	7.0615	5.9659	5.1068	4.4208
$1S-22^{1}P$	164.1605	80.6898	47.8831	31.6807	22.5045	16.8078	13.0299	10.3963	8.4876	7.0602	5.9648	5.1059	4.4200
1S-23 ¹ P	164.1399	80.6785	47.8760	31.6759	22.5010	16.8052	13.0278	10.3947	8.4862	7.0590	5.9638	5.1050	4.4193
$1S-24^{1}P$	164.1217	80.6686	47.8698	31.6717	22.4979	16.8028	13.0260	10.3932	8.4850	7.0580	5.9629	5.1043	4.4186
1S-25 ¹ P	164.1057	80.6599	47.8644	31.6679	22.4952	16.8008	13.0243	10.3919	8.4840	7.0571	5.9622	5.1036	4.4181

Table 2. Theoretical and experimental wavelengths of the $1 {}^{1}S_{0} \rightarrow np {}^{1}P_{1} (1s^{2} {}^{1}S_{0} \rightarrow 1snp {}^{1}P_{1})$ transitions of helium-like ions up to *Z* = 8.

10 10		Li II			Be III			B IV			
18- <i>n</i> - P	λ ^p	lexp ^(a)	۵۵/۸	$\lambda^{ m p}$	λexp ^(a)	Δλ/λ	$\lambda^{ m p}$	λexp ^(a)	Δλ/λ		
1S-2 ¹ P	199.2800	199.280	0.0000%	80.2522	80.254	0.0018%	60.390	60.313	0.0033%		
1S-3 ¹ P	178.0140	178.014	0.0000%	88.3140	88.314	0.0000%	52.6852	52.679	0.098%		
1S-4 ¹ P	171.5750	171.575	0.0000%	84.7502	84.758	0.0092%	50.4334	50.435	0.0032%		
1S-5 ¹ P	168.7421			83.1934	83.202	0.083%	49.4536	49.456	0.0048%		
1S-6 ¹ P	167.2401			82.3706	82.377	0.0198%	48.9368				
1S-7 ¹ P	166.3466			81.8821	81.891	0.089%	48.6302				
1S-8 ¹ P	165.7714			81.5679			48.4332				
1S-9 ¹ P	165.3792			81.3539			48.2990				
1S-8 ¹ P	165.0997			81.2015			48.2035				

10 10		CV			NVI			OVII			
18- <i>n</i> ⁻ P	λnr^p	λexp ^(a, b)	Δλ/λ*	λnr ^p	$\lambda \exp^{(d)}$	Δλ/λ	λnr ^p	λexp ^(a, c)			
1S-2 ¹ P	40.2647	40.268 ^b	0.0082%	28.7857	28.787	0.0045%	21.6021	21.602 ^a	0.0005%		
1S-3 ¹ P	34.9749	34.973 ^{a, b}	0.0054%	24.9012	24.898	0.0128%	18.6283				
1S-4 ¹ P	33.4271	33.426 ^{a, b}	0.0033%	23.7736	23.771	0.089%	17.7709				
1S-5 ¹ P	32.7553	32.754 ^{a, b}	0.0039%	23.2850	23.281	0.0172%	17.3999				
1S-6 ¹ P	32.4014	32.399 ^b	0.0074%	23.0278	23.024	0.0165%	17.2047	17.199°	0.0331%		
1S-7 ¹ P	32.1916			22.8754			17.0891	17.083 ^c	0.0357%		
1S-8 ¹ P	32.0568			22.7775			17.0148	17.008 ^c	0.0399%		
1S-9 ¹ P	31.9651			22.789			16.9643	16.957°	0.0431%		
1S-8 ¹ P	31.8997			22.6635			16.9284	16.924 ^c	0.0230%		

Continued

Here, λ^p denotes the present SCUNC calculations values, λ exp represents the experimental values and $\Delta\lambda/\lambda$ stands for the percentage deviations with respect to the experimental value of the corresponding system. (a), experimental data of Robinson [7]; (b), experimental data of Svensson [8]; (c), experimental data of Bartnik *et al.* [11]; (d), experimental data of Engtröm and Litzén [10]. Wavelengths are in angstroms.

respect to the experimental values of the corresponding system are less than 0.009%. The slight discrepancies can be explained by the fact that the present formalism disregards explicitly mass polarization, relativistic and QED corrections. For the transitions $1 {}^{1}S_{0} \rightarrow np {}^{1}P_{1}$ ($n \ge 3$), comparison with the quoted experimental data indicates again good agreements. For these levels, the percentage deviations with respect to the experimental value of the corresponding system are less than 0.05%. Here, the discrepancies may be imputed mainly to mass polarization corrections which are not taken into account in the present calculations. In fact, and as well mentioned by Beiersdorfer *et al.* [9], the $n \ge 3$ levels are less affected by electron-electron interactions, relativistic and QED corrections. Then, for $n \ge 3$ states, the ratio m/M (m and M respectively the electron and nuclear masses) becomes important while increasing the Z-charge number. Nevertheless, the present SCUNC semi-empirical formulas may be considered as good representative of experimental data when electron-electron interactions, relativistic and QED corrections are disregarded. In Table 3, the SCUNC predictions for the wavelengths belonging to the $1s^2 {}^1S_0 \rightarrow 1s2p {}^{1,3}P_1$ transitions in He-like ions are compared to the ab initio calculations of Acaad et al., [12] using wave function expanded in a triple series of Laguerre polynomials of the *perimertric* coordinates, the computational results of Safronova et al., [13] applying the MZ code through a perturbation theory based on hydrogen-like functions and with the data of Porter [14] using the plasma simulation code CLOUDY. The overall agreement between the calculations is reasonably gratifying. Here, the $|\Delta \lambda_{\text{theo}}|$ differences in wavelengths between the present calculations and the theoretical literature data [12] [13] [15] have never overrun 0.003 Å for the $1s^2 {}^{1}S_0 \rightarrow 1s2p {}^{1}P_1$ resonance line and 0.008 Å for the $1s^{2} {}^{1}S_{0} \rightarrow 1s2p {}^{3}P_{1}$ intercombination line up to Z = 22. This may point out

77	$1s^2 {}^1S_0 \rightarrow 1s2p {}^1P_1$ (resonance line: r)					$1s^2 {}^1S_0 \rightarrow 1s2p {}^3P_1$ (intercombinaison line: <i>i</i>)					
L	λp	∕theoª, b	∕theo°	⊿∂theo ª, b	⊿∂theo °	λp	∕theo ^{a, b}	∕theo°	⊿∂theo ª, b	⊿ ∂theo °	
2	584.3339	584.3343ª		0.0004		591.4121	591.499ª		0.0002		
3	199.2800	199.2791ª		0.0009		202.2252					
4	80.2522	80.2535ª		0.0013		81.6677					
5	60.390	60.3135ª		0.0020		61.0880	61.0882 ^a		0.0002		
6	40.2647	40.2671ª	40.2680	0.0024	0.0033	40.7302	40.7299 ^a	40.7310	0.0003	0.0008	
7	28.7857	28.7867ª	28.7870	0.0010	0.0013	29.0818	29.0840 ^a	29.0840	0.0022	0.0022	
8	21.6021	21.6012 ^a	21.6020	0.0009	0.0001	21.7988	21.8033 ^a	21.8070	0.0008	0.0045	
9	16.8088	16.8061ª	16.8070	0.0027	0.0018	16.9438	16.9496ª	16.9470	0.0045	0.0082	
8	13.4514		13.4470		0.0044	13.5464		13.5530		0.0066	
9	9.0050		9.0030		0.0020	9.0880		9.0830		0.0060	
12	9.1689		9.1688		0.0001	9.2310		9.2312		0.0062	
13	7.7568		7.7573		0.0005	7.8044		7.8070		0.0026	
14	6.6475		6.6480		0.0005	6.6847		6.6883		0.0036	
15	5.7701	5 020cb				5.7898	r occab				
16	5.0387	5.0386	5.0387	0.0002	0.0000	5.0667	5.0667	5.0665	0.0000	0.0002	
17	4.4445	4.4445 ^b		0.0002		4.4682	4.4681 ^b		0.0001		
18	3.9491	3.9492 ^b	3.9488	0.0001	0.0003	3.9694	3.9695 ^b	3.9691	0.0001	0.0003	
19	3.5318	3.5319 ^b		0.0002		3.5493					
20	3.1771	3.1772 ^b	3.1772	0.0001	0.0001	3.1924	3.1928 ^b	3.1928	0.0004	0.0004	
21	2.8731	2.8731 ^b		0.0000		2.8866	2.8871 ^b		0.0005		
22	2.684	2.685 ^b		0.0001		2.6226	2.6230 ^b		0.0004		

Here, λ^p denotes the present SCUNC calculations, λ theo represents the theoretical values and $|\Delta\lambda$ theo| stands for the difference in wavelengths between the present calculations and the other theoretical ones (λ theo^a or λ theo^b). (a): calculations of Accad *et al.*, [12], (b): calculations of Safronova *et al.* [13]; (c): calculations of Porter [14]. Wavelengths are in angstroms.

the good agreement between the calculations. The discrepancies with respect to the accurate *ab initio* computations are due to the present none-relativistic formalism. **Table 4**, shows a comparison of the present wavelengths for the forbidden $1s^2 {}^{1}S_0 \rightarrow 1s2s {}^{3}S_1$ transitions of He-like systems (Z = 2 - 15) with the NIST compiled data. Excellent agreement is obtained between the SCUNC predictions and the NIST data. Except for Z = 8, the maximum shift in wavelengths with respect to the NIST values is at 0.003 Å. In **Table 5**, the present theoretical wavelengths for the $1snp {}^{1}P1 \rightarrow 1s^{2} {}^{1}S0$ ($2 \le n \le 5$) transitions of the helium-like ions up to Z = 9 are compared to the λ nrel—nonrelativistic wavelengths values and to the λ_{tot} —total wavelengths (including mass polarization, relativistic corrections and the Lamb-shift correction for the 1 ${}^{1}S$ level) computed by Accad *et al.* [12]. For the $1s^{2} {}^{1}S_{0} \rightarrow 1s2p {}^{1}P_{1}$ resonance line, the uncertainties between the present calculations and the λ_{tot} —total wavelengths

Z	∕SCUNC	λnist	Δλ *
2	625.563	625.563	0.000
3	210.069	210.069	0.000
4	104.547	104.548	0.001
5	62.439	62.440	0.001
6	41.469	41.472	0.003
7	29.531	29.534	0.003
8	22.094	22.101	0.007
9	17.149	-	
10	13.696	13.699	0.003
11	11.190	11.192	0.002
12	9.313	-	
13	7.872	-	
14	6.741	6.740	0.001
15	5.838	-	

Table 4. Comparison of the SCUNC predictions with the NIST data the wavelengths belonging to the forbidden $1s^2 {}^{1}S_0 \rightarrow 1s2s {}^{3}S_1$ transitions in He-like (Z = 2 - 15) systems. Wavelengths are in angstroms.

 $^{*}|\Delta\lambda| = |\lambda^{\rm SCUNC} - |\lambda^{\rm NIST}|.$

Table 5. Theoretical wavelengths for the $1s^2 {}^{1}S_0 \rightarrow 1snp {}^{1}P_1$ ($2 \le n \le 5$) transitions in He-like (Z = 3 - 9) ions. Here, λ denotes the present SCUNC calculations, λ nrel denotes the nonrelativistic wavelengths and λ tot the theoretical wavelengths of Accad *et al.* [12] including mass polarization, relativistic corrections and the Lamb-shift correction for the 1S level. Wavelengths are in angstroms.

			Theory	Comparison		
System	Transition	Present λ	Accad <i>et al.</i> ∕nrel	Accad <i>et al.</i> <i>i</i> tot	$ \lambda - \lambda nrel $	$ \lambda - \lambda tot $
	1S-2 ¹ P	199.2800	199.2813	199.2791	0.0013	0.0009
Li II	1S-3 ¹ P	178.0140	178.0162	178.0143	0.0022	0.0003
	1S-4 ¹ P	171.5750	171.5776	171.5757	0.0026	0.0007
	1S-5 ¹ P	168.7421				
	1S-2 ¹ P	80.2522	80.2600	80.2535	0.0078	0.0013
Be III	1S-3 ¹ P	88.3140	88.3134	88.3075	0.0006	0.0065
	1S-4 ¹ P	84.7502	84.7588	84.7532	0.0086	0.0030
	1S-5 ¹ P	83.1934	83.2044	83.1989	0.090	0.0055
	1S-2 ¹ P	60.390	60.3224	60.3135	0.094	0.0025
B IV	1S-3 ¹ P	52.6852	52.6876	52.6800	0.0024	0.0052
	1S-4 ¹ P	50.4334	50.4408	50.4335	0.0074	0.0001
	1S-5 ¹ P	49.4536	49.4621	49.4549	0.0085	0.0013
	1S-2 ¹ P	40.2647	40.2774	40.2671	0.0127	0.0024

Continued						
C V	1S-3 ¹ P	34.9749	34.9811	34.9723	0.0062	0.0026
	$1S-4^{1}P$	33.4271	33.4343	33.4259	0.0072	0.0012
	1S-5 ¹ P	32.7553	32.7622	32.7540	0.0069	0.0013
	$1S-2^{1}P$	28.7857	28.7980	28.7867	0.0123	0.0010
N VI	1S-3 ¹ P	24.9012	24.9098	24.9002	0.0086	0.0010
	$1S-4^{1}P$	23.7736	23.7806	23.7714	0.0070	0.0022
	1S-5 ¹ P	23.2850				
	1S-2 ¹ P 1S-3 ¹ P	21.6021	21.6133	21.6012	0.092	0.0009
O VII		18.6283	18.6381	18.6280	0.0098	0.0003
	$1S-4^{1}P$	17.7709	17.7777	17.7680	0.0068	0.0029
	1S-5 ¹ P	17.3999	17.4051	17.3957	0.0052	0.0042
	$1S-2^{1}P$	16.8088	16.8188	16.8061	0.080	0.0027
F VIII	1S-3 ¹ P	14.4588	14.4690	14.4584	0.082	0.0004
	$1S-4^{1}P$	13.7853				
	1S-5 ¹ P	13.494 2				

results [12] are less than 0.003 Å. As far as comparison with the λ_{nrel} -nonrelativistic wavelengths values are concerned, it is seen that the uncertainties are about 0.01 Å for Z = 5 - 9. This points out that, the present SCUNC results are most accurate than the λ_{nrel} -nonrelativistic wavelengths obtained by Accad *et* al. [12] when increasing the nuclear charge. For $n \ge 3$ states, it can also be seen that the present SCUNC wavelengths values are most accurate than that of Accad *et al.* [12]. Here, the uncertainties with respect to the λ_{tot} -total wavelengths are less than 0.005 Å for all the entire series considered (Z = 2 - 9) whereas the uncertainties with respect to the λ_{nrel} -nonrelativistic wavelengths increase up to 0.01 Å for Z = 9. This may point out again that, in the SCUNC formalism, relativistic effects are implicitly incorporated in the *fi*-screening constants evaluated from experimental data. Besides, it should be mentioned that the λ_{tot} —total wavelengths equal to 88.3075 Å for the 1s² ${}^{1}S_{0} \rightarrow$ 1s3p ${}^{1}P_{1}$ transition of Be III may be probably lower as the corresponding high precision measurement is at 88.3140 Å [7] to be compared to the present prediction at 88.3140 Å.

4. Conclusion

The Screening Constant per Unit Nuclear Charge method has been applied to inaugurate the first spectral lines for the three most intense lines (resonance line $1s^2 {}^{1}S_0 - 1s2p^{1}P_1$ intercombination line $1s^2 {}^{1}S_0 - 1s2p {}^{3}P_1$ and forbidden line $1s^2 {}^{1}S_0 - 1s2s {}^{3}S_1$ and for the $1s^2 {}^{1}S_0 - 1snp^{1}P_1$ transitions in the helium isoelectronic sequence. In our knowledge, only the spectral lines of the Hydrogen-like ions have

determined empirically in the past. At present hour, the possibilities to calculate easily the most intense lines of helium-like systems in the X-ray range in connection with plasma diagnostic are demonstrated in this work. All the results obtained in the present paper compared very well to various experimental and theoretical literature data. It should be underlined the merit of the SCUNC formalism providing accurate results via simple analytical formulas without needing to use codes of simulation. The accurate results obtained in this work point out the possibilities to investigate highly charged He-positive like ions in the framework of the SCUNC method.

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this paper.

References

- Gabriel, A. and Jordan, C. (1969) Monthly Notices of the Royal Astronomical Society, 145, 241-248. https://doi.org/10.1093/mnras/145.2.241
- [2] Keenan, F.P., McCann, S.M., Kingstne, A.E. and McKenzie, D.L. (1987) Astrophysical Journal, **318**, 926-929. <u>https://doi.org/10.1086/165424</u>
- [3] McKenzie, D.L. and Landecker, P.B. (1982) Astrophysical Journal, 259, 372-380. https://doi.org/10.1086/160174
- Porquet, D. and Dubau, J. (2000) Astronomy and Astrophysics Supplement, 143, 495-514. https://doi.org/10.1051/aas:2000192
- [5] Liedahl, D.A. (1999) X-Ray Spectroscopy in Astrophysics, EADN School Proceedings, 1997, In: Van Paradijs, J.A. and Bleeker, J.A.M., Eds., 189.
- [6] Porquet, D., Mewe, R., Raassen, A.J.J., Kaastra, J.S. and Dubau, J. (2001) Helium-Like Ions as Powerful X-Ray Plasma Diagnostics. X-Ray Astronomy 2000. ASP Conference Proceeding, Vol. 234, 121-127.
- [7] Robinson, H.A. (1937) *Physical Review*, 14, 51. https://doi.org/10.1103/PhysRev.51.14
- [8] Svensson, L.A. (1970) *Physica Scripta*, 1, 246. https://doi.org/10.1088/0031-8949/1/5-6/009
- Beiersdorfer, P., Bitter, M., von Goeler, S. and Hill, K.W. (1989) *Physical Review A*, 40, 150. <u>https://doi.org/10.1103/PhysRevA.40.150</u>
- [10] Engström, L. and litzén, U. (1995) Journal of Physics B: Atomic, Molecular and Optical Physics, 28, 2565. <u>https://doi.org/10.1088/0953-4075/28/13/010</u>
- Bartnik, A.E., Biémont, E., Dyakin, V.M., Ya Faenov, A., Fiedorowicz, H., et al. (1997) Journal of Physics B: Atomic, Molecular and Optical Physics, 30, 4453. https://doi.org/10.1088/0953-4075/30/20/009
- [12] Accad, Y., Pekeris, C.L. and Schiff, B. (1971) *Physical Review A*, 4, 516. <u>https://doi.org/10.1103/PhysRevA.4.516</u>
- Safronova, U.I., Safronova, M.S. and Bruch, R. (1995) *Journal of Physics B: Atomic, Molecular and Optical Physics*, 28, 2803. https://doi.org/10.1088/0953-4075/28/14/005
- [14] Porter, R.L. (2006) Theory and Application of Helium and Helium-Like Ions in As-

trophysical Environments. College of Art and Sciences, Lexington University of Kentucky, Lexington.

- [15] Sakho, I. (2017) Atomic Data Nuclear Data Tables, 97, 425-438. https://doi.org/10.1016/j.adt.2016.12.001
- Sakho, I. (2018) Journal of Electron Spectroscopy and Related Phenomena, 222, 40-50. https://doi.org/10.1016/j.elspec.2017.09.011
- [17] Radzig, A.A. and Smirnov, M.B. (1985) Reference Data on Atoms, Molecules and Ions (Berlin: Springer) Moore E C 1971 Atomic Energy Levels (Natl. Stand. Ref. Data Ser. Natl. Bur. Stand. No. 35). U.S. GPO, Washington DC, Vol. 1, 4.
- [18] Arnaud, P. (1993) Cours de chimie physique. 3rd Edition, Dunod, Paris, Chapter 11, 88.
- [19] Herzberg, G. (1958) Proceedings of the Royal Society (London) A, 248, 309-332. https://doi.org/10.1098/rspa.1958.0246
- [20] Kramida, A., Ralchenko, Y., Reader, J. and NIST ASD Team (2018) NIST Atomic Spectra Database (ver. 5.6.1). National Institute of Standards and Technology, Gaithersburg. <u>https://physics.nist.gov/asd</u>