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ABSTRACT 
MicroRNAs are an important subclass of non-coding 
RNAs (ncRNA), and serve as main players into RNA 
interference (RNAi). Mature microRNA derived from 
stem-loop structure called precursor. Identification of 
precursor microRNA (pre-miRNA) is essential step to 
target microRNA in whole genome. The present work 
proposed 25 novel local features for identifying stem- 
loop structure of pre-miRNAs, which captures char-
acteristics on both the sequence and structure. Firstly, 
we pulled the stem of hairpins and aligned the bases 
in bulges and internal loops used ‘―’, and then 
counted 24 base-pairs (‘AA’, ‘AU’, …, ‘―G’, except 
‘――’) in pulled stem (formalized by length of pulled 
stem) as features vector of Support Vector Machine 
(SVM). Performances of three classifiers with our 
features and different kernels trained on human data 
were all superior to Triplet-SVM-classifier’s in po- 
sitive and negative testing data sets. Moreover, we 
achieved higher prediction accuracy through com-
bining 7 global sequence-structure. The result indi-
cates validity of novel local features. 
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1. INTRODUCTION 
MicroRNAs (miRNA) are small regulatory non-coding 
RNA molecule 17-25 bp long, and whose function is to 
down-regulate gene expression in a variety of manners, 
including translational repression, mRNA cleavage, and 
deadenylation [1,2]. More than one-third of human 
genes are thought to be regulated by miRNA, and these 
molecules represent the greatest number in eukaryotic 
genomes. The miRNA genes are initially transcribed as 
long primary transcripts (pri-miRNAs), which are then 
processed to the shorter, 60-120 bp stem-loop structures 
(called hairpin) known as miRNA precursor (pre- 
miRNA) [3]. Finally, the mature miRNA is separated 
from one of the two strands in pre-miRNA hairpin, and 

then by binding to a complementary target in the mRNA, 
which inhibits induces mRNA cleavage or translational 
repression [4]. 

Although the majority of the miRNA were identified 
through experimental way [5-7], computational predic-
tion techniques become possible and necessary due to 
accumulation of information and data about miRNA 
properties [8]. All existing computational prediction 
methods can be classified two categories: the compara-
tive sequence analysis approaches and the de novo (or ab 
initio) predictive approaches. Methods in the first cate-
gory based on the assumption that miRNA genes are 
conserved in the primary sequences and secondary 
structure crossing species. Several algorithms have been 
developed and successfully been used for predicting 
miRNA in various species [9-17]. However, for a species 
that does not have a closely homologies species se-
quenced, the first category methods will not work [15]. 
For this reason, the secondary category methods, that are 
de novo prediction methods, have been developed to 
predict miRNA in single genome. Instead of evolutional 
information, those methods use characteristics of se-
quence and/or secondary structure of pre-miRNAs to 
achieve their purposes. The stem-loop hairpin structure 
is the most noticeable but not discriminative charac- 
teristic of pre-miRNAs, because a large amount of non- 
pre-miRNA sequences can fold themselves into pre- 
miRNA-like hairpins. To identify pre-miRNA hairpins, 
most existed methods use sets of features concerning 
sequence composition [17-19], topological properties of 
the stem-loop [17,19,20], thermodynamic stability 
[17,19,20], and sometimes other properties including 
entropy measures [19]. Xue [18] shown that local 
contiguous substructures of pre-miRNAs are signifi- 
cantly distinct with that of pseudo pre-miRNAs. 

Moreover, most of de novo methods employed ma-
chine learning techniques to identify pre-miRNAs, such 
as Hidden Markov Models (HMM) [21,22], Support 
Vector Machine (SVM) [17-19,23], Naïve Bayes [24], 
Random Forest [25] and Random Walks [26]. SVM is a 
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supervised classification technique derived from the 
statistical learning theory of structural risk mini- 
mization principle, and first introduced by Vapnik [27]. 
It has been shown that SVM produce superior results 
than other supervised learning methods in a wide range 
of applications. Recently, they have been widely used 
in the bioinformatics field (include to learn the 
distinctive characteristics of miRNAs). SVMs have 
exhibited excellent generalization performance and less 
susceptible to over fitting than other techniques. 

In this work, the novel local sequence-structure fea-
tures of pre-miRNA based on “pulled” the stem-loop 
structure were introduced and SVM was employed as 
classifier to class real pre-miRNAs from pseudo ones. 
Those features contain information on both the sequence 
and structure of pre-miRNAs. Moreover, the new posi-
tive testing data set were built on updated miRNA 
registry database [28] with Xue’s way [18]. The tests 
show that new method outperformed the Triplet-SVM- 
classifier. 

2. METHODOLOGY 
2.1. Features for Identify Pre-miRNA 
The main difference in hairpins structure between pre- 
miRNA and pseudo pre-miRNAs are base pair composition 
in stem, the number of bulges and internal loops, and the 
size of bulges and internal loops. Simply, we can get  

sequence and structure information through counting 
base pair in “pulled” stem. Inspired by Xue’s result, a 
novel local sequence-structures feature of pre-miRNAs 
are proposed, which based on “pulled” stem of hairpins. 
Firstly, the secondary structures of the pre-miRNA and 
the candidates are predicted with the RNAfold [29]. 
Then, the stems of hairpin are pulled, just as Figure 1 
shows. The bases in bulges and internal loops are 
aligned with ‘―’. Finally, counted the number of 24 
base-pairs (‘AA’, ‘AU’, …, ‘―G’, except ‘――’, here 
‘―’ as fifth base) in pulled stem, such as Table 1, and 
normalized them with the length of pulled stem. It is 
noticeable that the base-pair ‘AU’ is different from ‘UA’ 
because of the direction of miRNA sequences (from 5’ to 
3’). The number of canonical base pair, that is ‘AU’, 
‘UA’, ‘GC’, ‘CG’, ‘GU’ and ‘UG’, reveals the base pairs 
composition in stem. The number of non-canonical base 
pair (no gap) displays the information of internal loop. 
The number of gaped base pair shows the information of 
bulges. Another local feature is the length of pulled stem. 

To improve the performance, the 7 global features 
used in other methods also are combined, which are 
numbers of base-pairs, GC content, length of sequences 
and central loop, free energy per nucleotide, 5’ and 3’ tail 
length. 

The combined feature vector of Figure 1 is shown as 
Table 2: 

 

 
Figure 1. The example of pulled stem. The sequence is hsa-mir-139 of Homo sapiens from 
miRNA registry database [28]. 

 
Table 1. The statistic of 24 possible base pairs (except ‘――’ ) in pulled stem in Figure 1. 

3’ 
The number of pair bases 

A U G C ― 

A 0 4 0 0 1 

U 5 0 4 1 0 

G 0 0 1 5 0 

C 0 0 7 0 0 

5’ 

― 0 1 0 0 ╳ 
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Table 2. The composition of feature vector in our method. 

Index Type Feature description Value 

1 Length of central loops 7 
2 Length of 5’ tail 3 
3 Length of 3’ tail 2 
4 Number of basepairs 25 
5 GC content 40/68 
6 Free energy of folding/length of sequence -34.8976/68 
7 

Global 

Length of sequence 68 

8 Length of pulled stem 29 
9~32 

Local 
Proportion of AA/AU/…/―C pairs in pulled stem 0/0.1379/…/0 

 
2.2. Data Sets 
All verified pre-miRNAs hairpins (positive examples) 
come from miRNA registry database [28] in March 2009 
(release 13.0), which contains 9539 reported pre-miRNA 
from 105 species, and 706 entries from Homo sapiens. 
The pseudo pre-miRNAs hairpins (negative examples) 
come from Xue’ data sets [18], which contained 8494 
pre-miRNA-like hairpins. SVM prediction model are 
trained on the same training data set of the Triplet- 
SVM-classifier [18], which contained 163 real human 
pre-miRNAs and 168 pseudo pre-miRNAs. The first 
testing data set (TE-C1) are 400 real human pre- 
miRNAs, which have no multiple loops and have low 
similarities each other (the sequence similarities are 
calculated using BLASTCLUST with S=80, L=0.5, 
W=16). Moreover, those sequences have low similarity 
with 163 training set. The CROSS-SPECIES testing set 
contains 3207 pre-miRNAs from 31 species. The 
selected criterion is same as Xue’s [18] (Only the 
pre-miRNAs with no multiple loops are used. The 
pre-miRNAs that share high sequences similarities with 
the human pre-miRNAs are excluded to avoid biased 
evaluation of the SVM trained on human data. The 
similarity is calculated using BLASTCLUST with S=80, 
L=0.5, W=16). The negative testing data set (TE-C2 and 
TE-C3) are same as Xue’s (including 1000 pseudo 
pre-miRNAs randomly picked up from the CODING 
data set, 2444 CONSERVED-HAIRPIN data set). The 
application of SVMs algorithms to every-day problems 
have been facilitated considerably by various easy-to- 
use software packages. Libsvm (version 2.87) [30] is 
used throughout this work. 

2.3. Measures for Assessment 
The prediction performance was evaluated by four 
indexes [31]: prediction accuracy (ACC), Matthews 
correlation coefficient (MCC), sensitivity (Sen) and 
selectivity (Sel). 

100%tp tnACC
tp tn fp fn

+
= ×

+ + +
          (1) 

( )( )( )( )
100%tp tn fp fnMCC

tp fp tp fn tn fp tn fn
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100%tpSelectivity
tp fp

= ×
+

           (3) 

100%tpSensitivity
tp fn
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+

           (4) 

where, tp is true positive, fp is false positive, tn is true 
negative, and fn is false negative. 

3. RESULTS AND DISCUSSION 
To demonstrate the validity of novel local sequence- 
structures feature, firstly, SVM classifier are performed 
with only 24 novel features (not including the length of 
pulled stem) on all testing data sets. The feature vector 
of training sets are scaled to zero means and unit devia-
tions, and the feature vector of testing sets are scaled 
according to the means and deviations of training sets. 
Three basic kernel functions (linear kernel, polynomial 
kernel and RBF kernel) have been tested on all testing 
data sets, and adjusted the parameters through grid way. 
The results were listed in Table 3 (the detail results see 
supplemental). As a comparison, it also listed the result 
of Triplet-SVM-classifier (3SVM) [18]. The boldface in 
tables is the maximum in same row. 

As shown in Table 3, the performance of three SVMs 
with 24 novel local features are better than Triplet-SVM- 
classifier’s. The best SVM (RBF kernel) is able to 
predict 82% (2956 out of 3607) of all pre-miRNAs, and 
can identify 92% (3159 out of 3444) pseudo pre- 
miRNAs. In contrast, 3SVM reports 80% (2886 out of 
3607) of all pre-miRNAs and 89% (3056 out of 3444) of 
all pseudo pre-miRNAs. This result demonstrates the 
validity of 24 novel local sequence-structure features for 
distinguishing real pre-miRNAs from pseudo ones. 

To improve the performance of SVM classifier, SVM 
with appended 7 global features are test on all testing 
sets, and the result were listed in Table 4.      
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Table 3. Performance comparisons with three kernel (with 24 novel local features) and 3SVM [18]. 

Result (true predicted/real) 
Test set Class 

Linear kernel Polynomial kernel RBF kernel 3SVM 
TE-C1 pre-miRNA 285/400 273/400 278/400 269/400 
TE-C2 pseudo 890/1000 896/1000 904/1000 881/1000 
TE-C3 pseudo 2246/2444 2253/2444 2255/2444 2175/2444 
CROSS-SPECIES pre-miRNA 2668/3207 2670/3207 2678/3207 2597/3207 

ACC 86.36 86.40 86.73 83.99 
MCC 73.11 73.10 73.64 69.23 
Sel 91.06 91.43 91.72 88.73 
Sen 81.87 81.59 81.95 79.46 

 
Table 4. Performance comparisons with three kernel (with 32 features) and 3SVM. 

Result (true predicted/real) 
Test set Class 

Linear kernel Polynomial kernel RBF kernel 3SVM 
TE-C1 pre-miRNA 292/400 296/400 303/400 269/400 
TE-C2 pseudo 953/1000 956/1000 961/1000 881/1000 
TE-C3 pseudo 2244/2444 2257/2444 2240/2444 2175/2444 
CROSS-SPECIES pre-miRNA 2818/3207 2834/3207 2850/3207 2597/3207 

ACC 89.45 89.96 90.11 83.99 
MCC 79.12 79.94 80.34 69.91 
Sel 92.83 93.29 92.94 88.73 
Sen 86.22 86.78 87.41 79.46 

 
Table 5. The prediction results of our method and 3SVM on cross species test sets. 

Methods (Accuracy/True predicted) 
SVM+Our features Species (ab.) Number 

RBF+F24 RBF+F32 
3SVM 

Anopheles gambiae (aga) 57 93.0/53 96.5/55 91.2/52 
Apis mellifera (ame) 53 96.2/51 98.1/52 94.3/50 
Arabidopsis thaliana (ath) 102 96.1/98 99.0/101 89.2/91 
Bombyx mori (bmo) 45 93.3/42 95.6/43 84.4/38 
Bos taurus (bta) 153 82.4/126 82.4/126 82.4/126 
Caenorhabditis briggsae (cbr) 87 93.1/81 93.1/81 94.3/82 
Caenorhabditis elegans (cel) 144 93.1/134 91.0/131 86.1/124 
Canis familiaris (cfa) 150 88.7/133 80.7/121 82.7/124 
Chlamydomonas reinhardtii (cre) 37 91.9/34 100.0/37 94.6/35 
Drosophila melanogaster (dme) 135 92.6/125 94.8/128 86.7/117 
Drosophila pseudoobscura (dps) 66 93.9/62 90.9/60 87.9/58 
Danio rerio (dre) 112 89.3/100 96.4/108 81.3/91 
Epstein Barr virus (ebv) 24 100/24 95.8/23 91.7/22 
Fugu rubripes (fru) 54 100/54 92.6/50 87.0/47 
Gallus gallus (gga) 342 61.4/210 81.6/279 60.8/208 
Human cytomegalovirus (hcmv) 11 72.7/8 90.9/10 63.6/7 
Kaposi sarcoma-associated herpesvirus (kshv) 12 75.0/9 75.0/9 66.7/8 
Monodelphis domestica (mdo) 33 90.9/30 84.8/28 87.9/29 
Mouse gammaherpesvirus 68(mghv) 9 88.9/8 77.8/7 88.9/8 
Macaca mulatta (mml) 211 79.1/167 83.4/176 82.5/174 
Mus musculus (mmu) 306 73.9/226 86.6/265 75.8/232 
Oryza sativa (osa) 189 86.2/163 94.2/178 88.9/168 
Populus trichocarpa (ptc) 114 86.8/99 96.5/110 82.5/94 
Pan troglodytes (ptr) 301 72.8/219 78.4/236 72.4/218 
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Rattus norvegicus (rno) 126 95.2/120 94.4/119 88.1/111 
Schmidtea mediterranea (sme) 63 92.1/58 95.2/60 77.8/49 
Triticum aestivum (tae) 16 93.8/15 93.8/15 93.8/15 
Tetraodon nigroviridis (tni) 55 96.4/53 90.9/50 87.3/48 
Vitis vinifera (vvi) 77 88.3/68 96.1/74 88.3/68 
Xenopus tropicalis (xtr) 68 95.6/65 94.1/64 91.2/62 
Zea mays (zma) 55 78.2/43 98.2/54 83.6/46 
Total 3207 83.5/2678 88.9/2850 81.1/2597 

 
We can see from Table 4 that the performance of 

SVM classifier significantly increased by combining the 
7 global features with 25 new local features (including 
the length of pulled stem). The ACC and MCC of the 
best SVM with 32 combined features are 90.11% and 
80.34%, respectively. It indicated that the global features 
are important to identify real pre-miRNAs from pseudo 
ones. 

Table 5 shows the SVM prediction on the CROSS- 
PECIES data sets, which contains 3207 known pre- 
iRNAs of 31 species. The SVM with new 24 local 
features and 32 combined features achieve overall 
accuracy of 83.5% and 88.9% on the CROSS-SPECIES 
data sets, respectively. The new 24 local features have 
better performance than Xue’s local features in almost 
31 species, especially for Epstein Barr virus (ebv) and 
Fugu rubripes (fru), our accuracy achieve 100% on 
those species, but Xue’s accuracy is 91.7% and 87%, 
respectively. 

4. CONCLUSIONS 
In this paper, a novel local features different from Xue’s 
[18] have been present for identifying real pre-miRNAs 
from pseudo ones. These features come from simply 
statistical on pulled stem of hairpin structure, and 
achieve higher accuracy than Triplet-SVM-classifier on 
updating testing data sets with SVM classifier. The 
results indicate that our method could be used as an 
alternative way for finding pre-miRNAs. 
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