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Abstract 
This paper stresses the theoretical nature of constructing the optimal deriva-
tive-free iterations. We give necessary and sufficient conditions for deriva-
tive-free three-point iterations with the eighth-order of convergence. We also 
establish the connection of derivative-free and derivative presence three-point 
iterations. The use of the sufficient convergence conditions allows us to de-
sign wide class of optimal derivative-free iterations. The proposed family of 
iterations includes not only existing methods but also new methods with a 
higher order of convergence. 
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1. Introduction 

At present, there are a lot of iterative methods for solving nonlinear equations 
and systems of equations (see [1] [2] [3] and reference therein). In particular, the 
derivative-free methods are necessary when the derivative of the function f is 
unavailable or expensive to obtain. In the last decade, the derivative-free two and 
three-point methods with better convergence properties were developed (see 
[4]-[19] and references therein). It should be pointed out that most of these me-
thods were proposed mainly for the concrete choice of parameters (see Table 1). 
Evidently, a systematic theory or an approach for constructing derivative-free 
methods is still needed. It is therefore of interest and necessity to develop a glob-
al theory. The aim of this paper is to fill up the above mentioned gap  
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Table 1. The derivative-free three-point iterative methods. 
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Behl. [18] ( )4 , ,n n nx yψ ω   

 
and to obtain the wide class of optimal derivative-free three-point methods. The 
paper is organized as follows. In Section 2, we give the necessary and sufficient 
conditions for derivative-free three-point iterations to be optimal order eight. 
We also establish the connection between derivative presence and derivative-free 
three-point methods. In Section 3, we apply the sufficient convergence condi-
tions to obtain the optimal derivative-free methods which are dependent on pa-
rameters in the third-step of considered iterations. We obtain families of optimal 
derivative-free three-point methods. They include many existing methods as 
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particular cases as well as new methods with the higher order of convergence. In 
last section, we present the results of numerical experiments that confirm the 
theoretical conclusion about the convergence order and make comparison with 
other known methods of the same order of convergence. Finally, numerical re-
sults show that new iterative methods can be significant by its high precision and 
practical use. 

2. The Optimal Derivative-Free Three-Point Iterations 

Typically, the optimal three-point iterative methods have a form [9]  

( )
( )

( )
( )

( )
( )1, , ,n n n

n n n n n n n n
n n n

f x f y f z
y x z y x z

f x f x f x
τ α+= − = − = −

′ ′ ′
     (1) 

in which the parameters nτ  and nα  are given by  
2 31 2 ,n n n nτ θ βθ γθ= + + + +


                   (2) 

and  
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( ) ( )( )42 31 2 1 2 4 1 4 ,n
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O f x

f y
α θ β θ β γ θ θ= + + + + + − + + + 

  (3) 

where , Rβ γ ∈

 , and ( )
( )

n
n

n

f y
f x

θ = . In [9] was proven the following theorem.  

Theorem 1. Let the function ( )f x  be sufficiently smooth and have a simple 
root *x I∈ . Furthermore, let the initial approximation 0x  be sufficiently close 
to *x . Then, the convergence order of the iterative method (1) is eight if and 
only if the parameters nτ  and nα  satisfy conditions (2) and (3), respectively.  

Remark. The second sub-step in (1) can be rewritten as any two-point optim-
al fourth-order method  

( )4 , ,n n nz x yψ=  

where ( )4 ,n nx yψ  is a real function using the evaluation of ( ) ( ), n nf x f x′  and 
( )nf y . Each method in 4ψ  has a parameter nτ  given by (2) with own β  

and γ . 
Now we consider the derivative-free variant of (1) 

( ) ( )
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Here ( )2 ,n nx yψ  is any second-order method. Actually, in Formula (4), the 
fundamental quantities are  

( )
( )

( )
( )

( )
( )

,  , and  .n n n
n n n

n n n

f y f y f z
f x f w f y

θ σ υ= = =  

Then ( )( )n nO f xθ = , ( )( )n nO f xσ =  for *
nx x→ , where *x  is a simple 

root of ( )f x . If ( )4 ,n nx yψ  is any two-point optimal fourth-order method 
then ( ) ( )( )4

n nf z O f x= , therefore ( )( )2
n O f xυ = . The iteration (4) obtained 

from (1) replacing ( )nf x′  by nφ . Due to change (5), the parameters in (4) 
does not remain as before and we denote them by nτ  and nα . We call the ite-
rations (1) and (4) the derivative presence (DP) and derivative-free (DF) variants 
respectively. If we use the notations  

1 , 1 ,
1n n n

n

c d c
γφ

= = +
+



   

then we have  

,  .n n n n n n nc dσ θ θ σ θ= + =                       (6) 

DP can be derived from DF by substituting n nσ θ= . The following is the 
main result of our work [11].  

Theorem 2. Let the assumptions of Theorem 1 be fulfilled. Then, the conver-
gence order of the iteration (4) is eight if and only if the parameters nτ  and 

nα  in (4) are given by formulas  
2 31 ,n n n n ndτ θ βθ γθ= + + + + 


                   (7) 

and  

( ) ( )( )
( ) ( )( )

2 2 3

4

1 1

1 2 .

n n n n n n n n

n n n n

d c d c

d O f x

α θ β θ γ β θ

θ υ

= + + + + + − −

+ + +

   

  



          (8) 

The proposed method (4) with parameters given by (7) and (8) is three-point 
derivative free and optimal in the sense of Kung and Traub. Kung-Traub con-
jecture [20] states that the multi-point iterative methods, based on k evaluations, 
could achieve optimal convergence order 12k − . Our proposed method is in 
concurrence with the conjecture as it needs only four function evaluation per 
iteration i.e., 4k = . Moreover, using ideas in [3] [10] one can propose more 
general construction for nτ  and nα  as following: 

Define ( ) ( ), , , ,n n n n n n nh gτ θ σ α θ σ υ= =  as sufficiently smooth functions of 
, , n n nθ σ υ . It is easy to show that ( ) ( )( )4

n nf z O f x=  if and only if 

00 10 01 1h h h= = = , where ( ) ( ), 0,0i j
ijh h= , ( )0, 0i j≥ ≥ . Hence, under the re-

striction 11 02 21 12 03 1h h h h h= = = = = , (4) is optimal if and only if  

000 1,g =  

100 010 001 1,g g g= = =  

101 011 2,g g= =  

200 20 110 020,  1,  0,g h g g= = =  
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300 20 30 210 20 120 0301,  1,  1.g h h g h g g= + − = − = = −  

Those can be easily checked with using (6). For the optimal formula, the re-
mainder term is ( )( )4

nO f x  in (8) because ( )( )2
n O f xυ = . In this sense, we 

can say that (4) is optimal if and only if , n nτ α  can be written as (7) and (8). 
When 0γ →  the Formula (7) leads to (2) and the Formula (8) leads to (3). A 

query may arise that there exists an optimal (DF) variant (4) for each optimal 
(DP) variant (1) and vice versa. If yes, how to find its (DF) variant? To respond 
this we use the connection of formulas (3) and (8). Actually, from (3) and (8) we 
deduce that  

( ) ( ) ( )( )2, , 2 1 2 ,n n n n n n n n n n nx y d dα α φ θ β θ υ θ= + − + + + +  

       (9) 

where ( ), ,n n n nx yα φ  is obtained replacing ( )nf x′  by nφ  in ( )( ), ,n n n nx y f xα ′  
in (1). From (9) we find that  

( )( ) ( ) ( ) ( )( ), , , , , , .
n n

n n n n n n n n n n n nf x
x y f x x y x y f x

φ
α α φ α

′=
′ ′= =     (10) 

These relations (9) and (10) give the rule of mutual transition of (DP) and (DF) 
variants. There exists the one optimal (DP) variant (4) for each optimal (DF) va-
riant (1). The converse does not true. Namely there are several (DF) variants of 
(DP). 

3. Application of Sufficient Convergence Condition to Derive  
New DF Iterations 

Now we give the application of Theorem 2 to construct new iterations. The suf-
ficient convergence conditions (7) and (8) allow us to design new derivative-free 
optimal methods. Depending on the form of nα  we can obtain different itera-
tions. We consider some special cases. 

1) Let nα  in (4) be a form  

( ) ( ) ( )
( )

,n
n n n

n

f z
f x

α ϕ θ ψ υ µ
 

= + +   
 

                  (11) 

where , ϕ ψ , and µ  are smooth enough functions. As regarding the iteration 
(4) with nα  given by (11) we give the following result.  

Theorem 3. The iteration (4) with nτ  given by (7) and with nα  given by 
(11) have the order of convergence eight, if the following conditions hold:  

( ) ( ) ( ) ( )0 1, 0 , 0 2 ,n nd cϕ ϕ ϕ β′ ′′= = = + 

  

( ) ( )( )20 6 1 ,n nd cϕ γ β′′′ = + − − 

   

( ) ( )0 0, 0 1,ψ ψ ′= =                      (12) 

( ) ( )0 0, 0 2 .ndµ µ′= =   

Proof. Using the Taylor expansion of smooth enough functions ( ) ( ), n nϕ θ ψ υ  
and ( ),n nµ θ υ  we obtain an expression for (11). The comparison of this ex-
pression with sufficient condition (8) gives conditions (12).  
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When 0β γ= =

  in (7) the Theorem 3 leads to a theorem in [5]. That is to 
say, the similar theorem was proved in [5] only for special case of nτ :  

1 .n n ndτ θ= +                          (13) 

Therefore, Theorem 3 is more general, than that of [5]. Note that, in [5] are 
proposed four variants of nα  that include redundant terms like 2

nυ  and  

( )
( )

2

n

n

f z
f ω

 
  
 

. By neglecting these terms, nα  can be simplified essentially without 

loss of the order of convergence. When 0γ =  the condition (12) reduced to  

( ) ( ) ( ) ( ) ( ) ( )0 1, 0 2, 0 2 1 , 0 6 2 4 ,ϕ ϕ ϕ β ϕ γ β′ ′′ ′′= = = + = + − 

  

( ) ( ) ( ) ( )0 0, 0 1, 0 0, 0 4.ψ ψ µ µ′ ′= = = =            (14) 

It means that the derivative presence variant (1) with parameters given by (7) 
and (11) has a convergence order eight under conditions (14). 

Thukral and Petković considered in [1] the particular case of (1) with nα  
given by (11) and with  

( ) ( ) ( )22 31 1 2 2 2 2 2 .
1 2

n
n n n n

n

b b b
b

θτ θ θ θ
θ

+
= = + + − + −

+ −
  

In this case ( )2 2 bβ = −  and ( )22 2 bγ = −  and the condition (14) coin-
cides with that of [1]. They also considered another particular case of (1) with 

nα  given by (11) and  

2 31 1 2 .
1n n n n n

n

τ θ θ θ θ
θ

= + = + + + +
−


  

In this case 1β γ= =

  and the condition (14) leads to that of [1]. The func-
tion ( )nϕ θ  in (11) can be written as  

( ) ( )2 2 31 .n n n n n n nc d cϕ θ τ θ β θ= + + − − 

                 (15) 

Due to generating function method [10] instead of nτ  we can take any func-
tion H  

( ) ( )( ) 2

2

0
, , , , ,n n

n n
n n

c H c d
H b c d R

c d b
θ ωθ

τ θ ω
θ θ

′+ + +
= = ∈

+ +
         (16) 

satisfying conditions  

( ) ( ) ( ) ( )0 1, 0 , 0 2 , 0 6 .nH H d H Hβ γ′ ′′ ′′′= = = = 

  

As a result, we have a family of optimal derivative-free three-point methods (4) 
with (11), (15), and (16). The constants β  and γ  can be expressed through 

, , b c d  and ω  as:  

( ) ( ) ( )( )
2 3

2 3 2 3

0 2
, 0 .

b dH d b d b dH c d
c c c c c

ω ω
β γ

′− − −  
′= = + + − − 

 


  

That is we have the iterations (4) with nτ  is given by (16) and nα  is given 
by  
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( ) ( )2 2 31 1 2 .n n n n n n n n n nc d c dα τ θ β θ θ υ= + + − − + +  

             (17) 

Note that the choice of parameter nτ  defined by (16) includes almost all the 
choices listed in Table 1 as particular cases. Thus the family of iterations (4) with 
(16) and (17) represents a wide class of optimal derivative-free three-point iterations.  

2) Let nα  in (4) be a form  

( ), ,n n n nKα τ θ υ= +                       (18) 

where nτ  is given by (7) and ( ),n nK θ υ  is sufficient smooth function of nθ  
and nυ .  

Theorem 4. The iteration (4) with nτ  given by (7) and nα  given by (18) 
has the order of convergence eight, if the following conditions hold:  

( ) ( ) ( ) ( )0,0 0,0 0, 0,0 1, 0,0 2 ,nK K K K dθ υ θυ′ ′ ′′= = = =   

( ) ( ) ( )20,0 2 , 0,0 6 1 .n n nK c K d cθθ θθθ β′′ ′′′= = − − 

            (19) 

Proof. From (7) and (8) it is clear that  

( ) ( ) ( ) ( )( )42 2 3, 1 1 2n n n n n n n n n nK c d c d O f xθ υ θ β θ θ υ= + − − + + +  

       (20) 

which holds under conditions (19).  
The (DP) variant of this iteration is obtained from (4), (7), and (18) when 

0γ → . Note that the similar scheme was considered in [2]. 
In some cases, the form  

( ) ( ),
1 ,n n

n n n n n
n

K
W

θ υ
α τ τ θ υ

τ
 

= + = 
 

  



              (21) 

obtained from (18) is useful. Using (20) we obtain  

( ) ( )( )
( ) ( )( )

2 2 3

4

, 1 1

1 .

n n n n n n n n n

n n n n

W c c d d c

d O f x

θ υ θ β θ

θ υ

= + + − + − −

+ + +

  

  



         (22) 

For the iteration (4) with (7) and (21) we can formulate the following:  
Theorem 5. The iteration (4) with (7) and (21) has the order of convergence 

eight, if the following conditions hold:  

( ) ( ) ( )0,0 1, 0,0 0, 0,0 2 ,nW W W cθ θθ′ ′′= = =   

( ) ( )( )20,0 6 1 ,n n n nW c d d cθθθ β′′′ = − + − −  

                 (23) 

( ) ( )0,0 1, 0,0 .nW W dυ υθ′ ′′= =   

Proof. If we take (22) into account in the Taylor expansion of function 
( ),n nW θ υ  we arrive at (23). 
When 0γ =  the conditions (23) take a form  

( ) ( ) ( )0,0 1, 0,0 0, 0,0 2,W W Wθ θθ′ ′′= = =  

( ) ( ) ( ) ( )0,0 12 3 , 0,0 1, 0,0 2.W W Wθθθ υ υθβ′′′ ′ ′′= − = =          (24) 
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Remark. Obviously, as for nτ  one can take any function H given by (16) in 
the formulas (17) and (21).  

Note that in [3] were obtained some conditions that guarantee order eight of 
the method (4) with (7) and (21) i.e.,  

( ) 2 2, 1 ,
2 2n n n n n n n n n
a ch s s b s sτ θ θ θ θ= = + + + + + +

  

( )
( )

,n n
n

n

c f y
s

f x
=


 

( ) ( ), , , ,n n n n n nh s sα θ µ θ υ= ⋅  

( )

( ) ( )( )
( )( )

2 3

3 3 2 2

2 3 3

4

2, , 1
2 2

2 2 4 2 4
2 6 2 2

1 1 2 2

n n n n n n n n n n n n

n n n n n n

n n n n n n n n n n

n

d as s s

c m a b b cs s s

c d d c c d

O f x

µ θ υ υ υ θ θ υ υ θ

υ θ θ

θ θ υ β θ

−
= + + + + + +

− + − + −
+ + + +

= + + + + − + +

+

   

  

   (25) 

that does not coincide with (22). Moreover, the terms 2

2 n
d υ  and 3

6 n
mυ  seem to 

be redundant, because it suffices to determine nα  with accuracy ( )( )4
nO f x .  

Note that (DP) methods with (7) and (21) are often used. For example, 
Kung-Traub’s eighth-order method [21] has a form (1) with  

( )

( )
( ) ( ) ( ) ( ) ( )( )( )

( ) ( )( ) ( ) ( )( )
( )

( ) ( )

2

2

2 2

1 ,
1

1
, .

1 1

n
n

n n n n n n n n n
n n

n n nn n n n

f y f x f y f y f z
W

f x f z f y f z

τ
θ

θ θ θ υ
θ υ

θ υ υ

=
−

+ − + −
= =

− −− −



 (26) 

The Bi-Wu-Ren’s optimal eighth-order method [22] has a form (1) with  

( )
( ) ( ) ( )( )
( ) ( ) ( ) [ ] [ ]( )

,

1 ,
2 , , ,

n n

n n n n
n

n n n n n n n n n

h

f x f x f z
f x f z f z y f z x x z y

τ θ

β
α

β

=

′ +
=

+ − + −



    (27) 

where  

[ ] ( ) ( ) [ ] [ ]( ),
, , , , .n n nn n

n n n n n
n n n n

f x f z xf y f z
f z y f z x x

y z x z
′ −−

= =
− −

 

But (27) is not the example for (21). 
The Sharma and Arora’s optimal eighth-order method [21] has a form (1) 

with  

( ) ( )
( ) ( ) ( )( )

22

2

1 ,
1 2

4 1 1
.

1 1 2 3 4

n
n

n n n
n n

n n n n n n

τ
θ

θ θ υ
α τ

θ υ θ θ θ υ

=
−

− −
=

− + − + −



 

          (28) 
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Moreover, we suggest that more general theory for nτ  as  
2 2 3

20 11 02 30
2 2 3

21 12 03

1

.
n n n n n n n n

n n n n n

h h h h

h h h

τ θ σ θ θ σ σ θ

θ σ θ σ σ

= + + + + + +

+ + + +





 

3) Let nα  in (4) be a form  

[ ] ( ) [ ] ( )( ) [ ], , , , , ,
n

n
n n n n n n n n n n n n n n nf z y z y f z y x z y z x f z y x

φα
ω

=
+ − + − −

  (29) 

that often used in practice, see [4] [12] [14] [15] [16]. Of course, nτ  and nα  
given by (7) and (29) satisfy the sufficient conditions (7) and (8). The (DP) va-
riant of (4) with (7) and (29) has a form (1)  

( )
( )

,n
n n

n

f x
y x

f x
= −

′
 

( )4 , ,n n nz x yψ=  

( )
( )1 ,n

n n n
n

f z
x z

f x
α+ = −

′
                     (30) 

where ( )
[ ] ( ) [ ], , ,

n
n

n n n n n n n

f x
f z y z y f y x x

α
′

=
+ −

. 

In [6] is proposed the eighth-order iteration (1) with (29) ( 0γ → ) and special 

nτ   

( )
( )

1 11 1 .
1

n n
nn

n

f x
f x

τ θ
θ

 
 
 = + + +
 

+ ′ 

                 (31) 

Our iteration (1) with (2) and (30) is more general than that of [6].  
4) Let nα  in (4) be a form  

( )( )
[ ] [ ] [ ]

2 31
, 1,

, , ,
n n n n n n

n
n n n n n n

A B C
a b c

af x z bf z y cf x y
φ θ θ θ ω θ υ

α
+ + + + + ∆

= + + =
+ +

         (32) 

where , ,a b c R∈ .  
We shall find the coefficients , , A B C  and , ω ∆  such that the iteration (4) 

with (7) and (32) has the order of convergence eight and state the following:  
Theorem 6. The iteration (4) with (7) and (32) has the order of convergence 

eight, if the following conditions hold:  

( )( ) ( )( ) ( )1 1 , 1 1 ,n n nA b d B d b c aβ= − − = − − + −  

  

( ) ( ) ( ) ( ) 2 31 1 2 2 ,n n nC a b a b a c c c cβ γ β= − + − + − + + − + − −        (33) 

( )1 , 1 2 .nb a b d bω = − ∆ = − + − + −  

Proof. Using the following relations  

[ ] ( ) [ ] ( ), 1 , , 1 ,n
n n n n n n n

n

f x y f z y φφ θ υ
τ

= − = −

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[ ] ( ), 1 ,
1

n
n n n n

n n

f x z φ θ υ
τ θ

= −
+ 

 

( ) ( )2 2 3 31 1 2 ,n n n n n n n n n
n

d d d dθ β θ β γ θ
τ

= − + − + − − +     






       (34) 

( ) ( )2 31 1 1 2 1 ,
1 n n n n n n

n n

d dθ θ β θ
τ θ

= − + − + − − +
+

  





 

2 31 1 , 1,
1

x x x x
x
= + + + + <

−
  

we get 

[ ] [ ] [ ]

( ) ( ) ( ) ( )( )
( ) ( )(
( ) ( ) ( )( ) ( ) )

( ) ( )( )( ) ( )( )

22 2

3

32 3

4

, , ,

1 1

1 2 2

2 1

2 2 1 .

n

n n n n n n

n n n n n

n n n

n n n n n

n n n n

af x z bf z y cf x y

a c bd a d b d a c bd

a d b d d

a c bd a d b d a c bd

b a b a c b bd O f x

φ

θ β θ

β γ β

β θ

θ υ

+ +

= + + + + − + − + + +

+ + − + + −

+ + + − + − + + +

+ + + + + − +

    

    



    



   (35) 

Substituting (35) into (32) and using the sufficient convergence condition (8) 
we arrive at (33). 

Thus, we have a family of optimal three-point (DF) the iteration (4) with (7) 
and (32) that contains three parameters a, b and c. Now, we consider some par-
ticular cases of the iteration (4) with (7) and (32). Let 1a b= =  and 1c = − . 
Then from (33) we find that  

( )
( )2

1 3
0, , 0, .

1
n n n

n
n

d
A B C c

γφ β γφ
ω

γφ

+ − − −
= = = = ∆ =

+

 

  

Hence we obtain 

( )( )( )
[ ] [ ] [ ]

( )
( ) ( )( ) ( )

( ) ( )
[ ] [ ] [ ]

2 3

3

2

1 1 3

, , ,

1 1 1 3
,

, , ,

n n n n n n n n n
n

n n n n n n

n n
n n n n

n n n

n n n n n n

d c c

f x z f z y f x y

f z f y
d

f f f x
f x z f z y f x y

γφ β γφ θ θ υ φ
α

γφ β γφ φ
ω ω

+ + − − − +
=

+ −

  
+ + + − − −  

  ≈
+ −

 

 



 

    (36) 

or 

( )
( )

( )
( ) ( ) [ ] [ ] [ ]( )

3

2

,
ˆ1 1 , , ,

n
n

n n
n n n n n n

n n n

f z f y
C f x z f z y f x y

f f f x

φα

ω ω

≈
  
− − + −  

  

  (37) 

where ( )ˆ 1 3n n nC dγφ β γφ= + − − −  . The sign ≈ in (37) indicates that it holds 
with accuracy ( )( )4

nO f x . Now, we consider concrete choice of nτ : 

2
1 , .

1n
n n n n

p N
d pc

τ
θ θ

= ∈
− +







                 (38) 
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For the choice (38) we have  
2
n nd pcβ = − 

  

and  

( )ˆ 1 .C p= − +  

The iteration (4) with (38) and (36) (or (37)) is converted to one given by So-
leymani in [23] for 0p =  and one given by Thukral in [7] for 1p = . For the 
choice 1p = −  the parameter nα  is simplified as  

( )
( )

[ ] [ ] [ ]

1
,

, , ,

n
n

n
n

n n n n n n

f z
f

f x z f z y f x y

φ
ω

α

 
+ 

 =
+ −

               (39) 

or using 
( )
( ) ( )

( )

( )( )611
1

n
n

nn

n

f z
O f x

f zf w
f w

+ = +
−

 we have  

( )
( ) [ ] [ ] [ ]( )

.
1 , , ,

n
n

n
n n n n n n

n

f z
f x z f z y f x y

f

φα

ω

=
 
− + − 

 

        (40) 

Let  

2 31 1 ,
1n n n n n

n n

d
d

τ θ βθ γθ
θ

= = + + + +
−

 






            (41) 

with  
2 3, .n nd dβ γ= =  

  

Then 2
nC c= −   and we have  

( )
[ ] [ ] [ ]

2 31
.

, , ,
n n n n n n

n
n n n n n n

c c
f x z f z y f x y

θ θ υ φ
α

− +
=

+ −

 

               (42) 

The iteration (4) with (41) and (42) coincides with one given by Soleymani in 
[23] with  

( ) ( )
( ) ( )

( )

[ ] [ ] [ ]

3
24 2

3 3
1 1

1
,

, , ,

n
n n n n n n n n n

n n
n

n n n n n n

f y
c

f x
f x z f z y f x y

θ γφ υ σ υ θ υ φ
γφ

α

 
+ − + − + +  + =

+ −



  

here we can neglect the redundant terms 4 2 2 2
n n n nθ υ θ υ− + . Let 1a = , and 

0b c= = . Then from (33) we find that  

( ) 21, , 2 ,n n n n nA d B d C d c dβ β γ= − = − = − + −     

   

( )1, 2 1 .ndω = ∆ = −  

The Formula (32) is converted to  

( ) ( ) ( )( ) ( )( )( )
[ ]

2 2 31 1 2 1 2 1
.

,
n n n n n n n n n n n n

n
n n

d d d c d d

f x z

θ β θ β γ θ θ υ φ
α

+ − + − + − + − + + −
=

      

 

  (43) 
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On the other hand, the direct calculation using relations (34) gives  

( )
( )

( )
( ) ( )

[ ]
[ ]

( ) ( ) ( )
( ) ( )( )

1 3

2

2 3

4

,
1 1

,

1 1

1 2 , .

n n n n

n n n n n

n n n n n n

n n n n

f z f y f x y
f f f x f z y

d d c

c O f x R

η
ω ω

θ β θ γ β η θ

θ υ η

−
   
− − ×      

   

= + − + − + − −

+ + + ∈

   

 



          (44) 

We choose parameter η  in (44) such that the expression (44) coincides with 
the numerator of (43) within accuracy ( )( )4

nO f x . That is to say, that  
2.ndη β= − +   

As a result, (43) can be rewritten as  

( )
( ) ( ) ( )

( ) ( )
[ ]

[ ] [ ]

1 3
2

2

,
1 1 .

, ,
n n n n n

n n
n n n n n n n

f z f y f x y
d

f f f x f x z f z y
φ

α β
ω ω

−
   

= − − −       ⋅   
 

   (45) 

Thus, we find a family of optimal (DF) iteration (4) with (7) and (45), that 
contains some existing iterations as particular cases. Thukral in [24] proposed 
eighth-order derivative-free iterations (called 1 2 3, , M M M ) for some special 

nτ :  

( )2 2
2

1 1 .
1n n n n n n

n n n n

d d c
d c

τ θ θ
θ θ

= = + + − +
− +

 

 






 

In this case 2
n nd cβ = − 

  and hence ncη =  , the nα  given by (45) leads to 
that of 1M  and 3M  in [24]. So, the Thukral’s method ( 1 2 3, ,M M M ) are in-
cluded in our family of (4) with (7) and (45). Thukral in [24] proposed also 
Petković type methods ( 1, 2P P ). For 1P  we get 1n n ndτ θ= +  , i.e. 0β = . In 
this case 2

ndη =   in (45) and our family of method (4) with (45) converted to 
1P . For 2P  we get  

1 .
1

n
n

n nc
θτ
θ

+
=

−




                         (46) 

In this case n nc dβ = 

  and ndη =  . Thus, our family of method (4) with (45) 
converted to 2P . It means that the ( 1, 2P P ) methods are also included in our 
family of (4) with (7) and (45). As stated above for the choice of (41) we have 

2
ndβ =  , so (45) is simplified as  

( )
( )

[ ]
[ ] [ ]

1
,

1 .
, ,

n n n n
n

n n n n n

f z f x y
f f x z f z y

φ
α

ω

−
 

= −  
 

               (47) 

Thus, we have optimal (DF) methods  

( ) ,n
n n

n

f x
y x

φ
= −  

( ) 1, ,
1

n
n n n n

n n n

f y
z y

d
τ τ

φ θ
= − =

−
 



               (48) 

( )
1 ,n

n n n
n

f z
x z α

φ+ = −   
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where nα  is defined by (47). This is (DF) variant of Sharma and Sharma’s op-
timal methods given in [19] [21] within accuracy ( )( )4

nO f x . It means that we 
develop (DF) variant of Sharma and Sharma’s method. 

4. Numerical Experiments 

In this section, we make some numerical experiments to show the convergence 
behavior of the presented derivative-free method (4) with parameters nτ  and 

nα . We also compare them with the ones developed by Soleymani [23], Thukral 
[7] [24] and Sharma et al. [19]. For this purpose, we consider smooth and 
non-smooth nonlinear functions, which are given as follows:  

( ) *
1 e 1, 4.9651142

5
x xf x x−= + − =  

( ) ( )3 2 3 *
2 e cos 1 1, 1x xf x x x x−= − − + + = −  

( ) 2 *
3 sin e 1, 0xf x x x= + − =  

( ) *
4

1 , 1.f x x x
x

= − =  

All computations are performed using the programming package Maple18 
with multiple-precision arithmetic and 2500 significant digits. The test functions 
have been used with stopping criterion * 25010nx x −− < , where *x  is a root of 
( )f x  and the approximation nx  to *x . In all examples, we consider that the 

parameter 0.01γ = −  and that 2α = −  in Chebyshew-Halley’s method. 
Nowadays, high order methods are important due to scientific computations 

in many areas of science and engineering use. For instance, planetary orbit cal-
culation, radiation calculations and many real life problems demand higher pre-
cision for desired results [4] [13]. The first example addresses this situation and 
we apply the presented methods to solve one such physical problem. In [4] have 
considered one of the famous classical physics problem which is known as 
Planck’s radiation law problem. First nonlinear function 1f  arises from this 
problem. 

( )1 0f x =  has two zeros. Obviously, one of the roots 0x =  is not taken for 
discussion. Another root is * 4.965114231744276303699x ≈ . Now, we give 
some numerical experiments and compare new methods with some well-known 
methods for the smooth function 1f  using the initial guess 0 6x = . In Table 2 
and Table 3, we exhibit computational order of convergence (COC) and abso-
lute error *

nx x−  as well as iteration numbers n are displayed. For presented 
methods and test functions, by using (see, e.g., [4] [11] [16]) 

( )
( )

* *
1

* *
1 2

ln
COC ,

ln
n n

n n

x x x x

x x x x
−

− −

− −
≈

− −
 

we have computed the order of convergence. 
From Table 2, we can observe that computed results completely support the  
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Table 2. Convergence behavior of scheme (4) for ( )1 0, 6f x x = .  

methods nα  nτ  n *
nx x−  COC 

(4) 

(32), ( )1, 1a b c= = = −  (38), ( )1p = −  3 0.3130e−674 8.00 

(32), ( )1, 1, 1b a c= = = −  (13) 3 0.3422e−670 8.00 

(32), ( )1, 0b a c= = =  (13) 3 0.1346e−667 8.00 

(32), ( )1, 0b a c= = =  (38), ( )0p =  3 0.1078e−670 8.00 

(32), ( )1, 1, 1b a c= = − =  (13) 3 0.3285e−665 8.00 

(32), ( )1, 1, 1b a c= = − =  (38), ( )0p =  3 0.3378e−668 8.00 

Soleymani [23] (32), ( )1, 1a b c= = = −  (38), ( )0p =  3 0.2023e−673 8.00 

Thukral [7] (32), ( )1, 1a b c= = = −  (38), ( )1p =  3 0.1239e−672 8.00 

1 2 3, ,M M M  [24] (45), 
1

1 n

η
γφ

 
= + 

 (38), ( )1p =  3 0.4813e−670 8.00 

P1 Thukral [24] (45), ( )0β =  (13) 3 0.1271e−667 8.00 

P2 Thukral [24] (45), 
1

n

n

dβ
γφ

 
= + 



 (46) 3 0.3112e−669 8.00 

Sharma et al. [19] (45), ( )0η =  (38), ( )0p =  3 0.7836e−671 8.00 

 
Table 3. Some particular cases of (4) with nτ  (16) and nα  (29). 

methods 
( )n nHτ θ=  n *

nx x−  COC 

choices of parameters ( )1 0, 6f x x =  

Lotfi [15] 
11, , 0,

1 2
n

n

dc d b ω
γϕ

= = − = =
+



 3 0.2785e−672 8.00 

King’s type [16] ( )21, 1 , , 2
1n

n

c d d b βω β β
γϕ
−

= = = − − = =
+

  3 0.1004e−674 8.00 

Zheng [12] ˆ1, , 0nc d d b ω= = − = =  3 0.9462e−674 8.00 

Sharma [14] 
11, , 0

1 n

c d b ω
γϕ

= = − = =
+

 3 0.4414e−673 8.00 

Chebyshew-Halley [4] ( )1 21, 2 , ,
1 1 n

n n

c d b Hαα ω θ
γϕ γϕ

 
= = − + = = + + 

 3 0.7466e−671 8.00 

 
theory of convergence discussed in previous section. In addition to the compar-
ison of new methods with other methods we include some special cases of pro-
posed family (4) in Table 3. 

Table 4 illustrates the number of iterations needed to achieve approximate 
solution and absolute residual error of the corresponding function ( )nf x  
using the stopping criterion * 25010nx x −− < . 

As nτ  in Table 2 is used same in each method, it is shown in Table 4.  
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Table 4. Comparisons between different methods. 

nα  

( )f x  ( )2f x  ( )3f x  

Methods 0x  −0.6 −1.5 

, ,a b c  n ( )nf x  n ( )nf x  

(32) 

1a =       

1b =  4 1.60 (−691) 4 1.37 (−349)  

1c = −       

1a =       

1b =  5 2.44 (−395) 4 2.20 (−260)  

1c = −       

0a =       

1b =   - 5 6.80 (−1233) (4) 

0c =       

0a =       

1b =  4 9.48 (−541) 4 9.00 (−300)  

0c =       

1a = −       

1b =   - 5 8.55 (−988)  

1c =       

1a = −       

1b =  4 7.55 (−316) 5 2.25 (−1777)  

1c =       

1a =       

1b =  4 2.72 (−484) - - Soleymani [23] 

1c = −       

1a =       

1b =  4 1.75 (−449) 4 7.99 (−702) Thukral [7] 

1c = −       

(45) 

1
1 n

η
γφ

=
+

 4 1.75 (−449) 4 9.49 (−267) 1 3,M M  [24] 

0β =  5 1.05 (−875) 5 4.59 (−1301) P1 Thukral [24] 

1
n

n

dβ
γφ

=
+



 5 1.09 (−707) 5 1.14 (−1709) P2 Thukral [24] 

0η =  5 2.98 (−1069) 4 2.33 (−373) Sharma et al. [19] 

 
Furthermore, when the iteration diverges for the considered initial guess 0x , we 
denote it by “−”. 

From Table 4, we see that the convergence behavior of the presented families 
with different parameters and the iteration number n are the same as for all con-
sidered methods. 

The result of Table 5 demonstrates that new methods iteration numbers are  
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Table 5. Comparison of various iterative methods for ( )4 0, 2f x x = − .  

methods nα  nτ  n COC 

(4) 

(32), ( )1, 1a b c= = = −  (38), ( )1p = −  6 8.00 

(32), ( )1, 1, 1b a c= = = −  (13) 5 8.00 

(32), ( )1, 0b a c= = =  (13) 6 8.00 

(32), ( )1, 0b a c= = =  (38), ( )0p =  6 8.00 

(32), ( )1, 1, 1b a c= = − =  (13) 5 8.00 

(32), ( )1, 1, 1b a c= = − =  (38), ( )0p =  10 8.00 

Soleymani [23] (32), ( )1, 1a b c= = = −  (38), ( )0p =  6 8.00 

Thukral [7] (32), ( )1, 1a b c= = = −  (38), ( )1p =  8 8.00 

P1 Thukral [24] (45), ( )0β =  (13) 14 8.00 

P2 Thukral [24] (45), 
1

n

n

dβ
γφ

 
= + 



 (46) 8 8.00 

Sharma et al. [19] (45), ( )0η =  (38), ( )0p =  21 8.00 

 
used lesser than other existing methods under condition * 25010nx x −− < . 
However, the dynamic behavior of iterations may depend on the choices of pa-
rameters and problems under consideration. In sum, numerical results show 
that new iterative methods can be significant by its high precision and practical 
use. 

5. Conclusion 

We derive the necessary and sufficient conditions for derivative-free three-point 
iterations with the optimal order. The use of these conditions allows us to derive 
the families of optimal derivative-free iterations. We propose the families of op-
timal derivative-free iterations (4) with nτ  given by (16) and nα  given by 
(17), (29), (32), and (45). Our families include many existing iterations as par-
ticular cases, as well as new effective iterations. We reveal redundant terms in 
well-known methods given in [3] [5] [23]. Dropping these terms allows us to 
simplify their algorithms and save computation time. 

Acknowledgements 

The authors wish to thank the editor and anonymous referees for their valuable 
suggestions on the first version of this paper. This work was supported by the 
Foundation of Science and Technology of Mongolian under grant SST_18/2018. 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

https://doi.org/10.4236/ajcm.2020.101007


T. Zhanlav et al. 
 

 

DOI: 10.4236/ajcm.2020.101007 116 American Journal of Computational Mathematics 
 

References 
[1] Thukral, R. and Petković, M.S. (2010) A Family of Three-Point Methods of Optimal 

Order for Solving Nonlinear Equations. The Journal of Computational and Applied 
Mathematics, 233, 2278-2284. https://doi.org/10.1016/j.cam.2009.10.012 

[2] Rhee, M.S., Kim, Y.I. and Neta, B. (2018) An Optimal Eighth-Order Class of 
Three-Step Weighted Newton’s Methods and Their Dynamics behind the Purely 
Imaginary Extraneous Fixed Points. International Journal of Computer Mathemat-
ics, 95, 2174-2211. https://doi.org/10.1080/00207160.2017.1367387 

[3] Petković, M.S., Neta, B., Petković, L.D. and Dzunic, J. (2014) Multipoint Methods 
for Solving Nonlinear Equations. Applied Mathematics and Computation, 226, 
635-660. https://doi.org/10.1016/j.amc.2013.10.072 

[4] Argyros, I.K., Kansal, M., Kanwar, V. and Bajaj, S. (2017) Higher-Order Deriva-
tive-Free Families of Chebyshev-Halley Type Methods with or without Memory for 
Solving Nonlinear Equations. Applied Mathematics and Computation, 315, 
224-245. https://doi.org/10.1016/j.amc.2017.07.051 

[5] Soleymani, F. and Khattri, S.K. (2012) Finding Simple Roots by Seventh- and 
Eighth-Order Derivative-Free Methods. International Journal of Mathematical 
Models and Methods in Applied Sciences, 6, 45-52.  
https://doi.org/10.1155/2012/932420 

[6] Matthies, G., Salimi, M., Sharifi, S. and Varona, J.L. (2016) An Optimal Three-Point 
Eighth-Order Iterative Method without Memory for Solving Nonlinear Equations 
with Its Dynamics. Japan Journal of Industrial and Applied Mathematics, 33, 
751-766. https://doi.org/10.1007/s13160-016-0229-5 

[7] Thukral, R. (2011) Eighth-Order Iterative Methods without Derivatives for Solving 
Nonlinear Equations. International Scholarly Research Network ISRN Applied Ma-
thematics, 2011, Article ID: 693787. https://doi.org/10.5402/2011/693787 
https://www.hindawi.com/journals/isrn/2011/693787  

[8] Soleymani, F. and Vanani, S.K. (2011) Optimal Steffensen-Type Methods with 
Eighth Order of Convergence. Computers & Mathematics with Applications, 62, 
4619-4626. https://doi.org/10.1016/j.camwa.2011.10.047 

[9] Zhanlav, T., Ulziibayar, V. and Chuluunbaatar, O. (2017) Necessary and Sufficient 
Conditions for the Convergence of Two and Three-Point Newton-Type Iterations. 
Computational Mathematics and Mathematical Physics, 57, 1090-1100.  
https://doi.org/10.1134/S0965542517070120 

[10] Zhanlav, T., Chuluunbaatar, O. and Ulziibayar, V. (2017) Generating Function 
Method for Constructing New Iterations. Applied Mathematics and Computation, 
315, 414-423. https://doi.org/10.1016/j.amc.2017.07.078 

[11] Zhanlav, T., Chuluunbaatar, O. and Otgondorj, Kh. (2019) A Derivative-Free Fami-
lies of Optimal Two- and Three-Point Iterative Methods for Solving Nonlinear Eq-
uations. Computational Mathematics and Mathematical Physics, 59, 920-936.  
https://doi.org/10.1134/S0965542519060149 

[12] Zheng, Q., Li, J. and Huang, F. (2011) An Optimal Steffensen-Type Family for 
Solving Nonlinear Equations. Applied Mathematics and Computation, 217, 
9592-9597. https://doi.org/10.1016/j.amc.2011.04.035 

[13] Khattri, S.K. and Steihaug, T. (2014) Algorithm for Forming Derivative-Free Op-
timal Methods. Numerical Algorithms, 65, 809-842.  
https://doi.org/10.1007/s11075-013-9715-x 

[14] Sharma, J.R., Guha, R.K. and Gupta, P. (2012) Some Efficient Derivative Free Me-

https://doi.org/10.4236/ajcm.2020.101007
https://doi.org/10.1016/j.cam.2009.10.012
https://doi.org/10.1080/00207160.2017.1367387
https://doi.org/10.1016/j.amc.2013.10.072
https://doi.org/10.1016/j.amc.2017.07.051
https://doi.org/10.1155/2012/932420
https://doi.org/10.1007/s13160-016-0229-5
https://doi.org/10.5402/2011/693787
https://www.hindawi.com/journals/isrn/2011/693787
https://doi.org/10.1016/j.camwa.2011.10.047
https://doi.org/10.1134/S0965542517070120
https://doi.org/10.1016/j.amc.2017.07.078
https://doi.org/10.1134/S0965542519060149
https://doi.org/10.1016/j.amc.2011.04.035
https://doi.org/10.1007/s11075-013-9715-x


T. Zhanlav et al. 
 

 

DOI: 10.4236/ajcm.2020.101007 117 American Journal of Computational Mathematics 
 

thods with Memory for Solving Nonlinear Equations. Applied Mathematics and 
Computation, 219, 699-707. https://doi.org/10.1016/j.amc.2012.06.062 

[15] Lotfi, T., Soleymani, F., Ghorbanzadeh, M. and Assari, P. (2015) On the Construc-
tion of Some Tri-Parametric Iterative Methods with Memory. Numerical Algo-
rithms, 70, 835-845. https://doi.org/10.1007/s11075-015-9976-7 

[16] Sharifi, S., Siegmund, S. and Salimi, M. (2016) Solving Nonlinear Equations by a 
Derivative-Free Form of the King’s Family with Memory. Calcolo, 53, 201-215.  
https://doi.org/10.1007/s10092-015-0144-1 

[17] Cordero, A., Hueso, J.L., Martinez, E. and Torregrosa, J.R. (2013) A New Technique 
to Obtain Derivative-Free Optimal Iterative Methods for Solving Nonlinear Equa-
tions. The Journal of Computational and Applied Mathematics, 252, 95-102.  
https://doi.org/10.1016/j.cam.2012.03.030 

[18] Behl, R., Gonzalez, D., Maroju, P. and Motsa, S.S. (2018) An Optimal and Efficient 
General Eighth-Order Derivative-Free Scheme for Simple Roots. The Journal of 
Computational and Applied Mathematics, 330, 666-675.  
https://doi.org/10.1016/j.cam.2017.07.036 

[19] Sharma, J.R. and Sharma, R. (2010) A New Family of Modified Ostrowskis Method 
with Accelerated Eighth-Order Convergence. Numerical Algorithms, 54, 445-458.  
https://doi.org/10.1007/s11075-009-9345-5 

[20] Kung, H.T. and Traub, J.F. (1974) Optimal Order of One-Point and Multi-Point 
Iteration. Journal of Applied and Computational Mathematics, 21, 643-651.  
https://doi.org/10.1145/321850.321860 

[21] Chun, C. and Neta, B. (2017) Comparative Study of Eighth-Order Methods for 
Finding Simple Roots of Nonlinear Equations. Numerical Algorithms, 74, 
1169-1201. https://doi.org/10.1007/s11075-016-0191-y 

[22] Bi, W., Wu, Q. and Ren, H. (2009) A New Family of Eighth-Order Iterative Me-
thods for Solving Nonlinear Equations. Applied Mathematics and Computation, 
214, 236-245. https://doi.org/10.1016/j.amc.2009.03.077 

[23] Soleymani, F. (2011) On a Bi-Parametric Class of Optimal Eighth-Order Deriva-
tive-Free Methods. International Journal of Pure and Applied Mathematics, 72, 
27-37.  

[24] Thukral, R. (2012) A Family of Three-Point Derivative-Free Methods of 
Eighth-Order for Solving Nonlinear Equations. Journal of Modern Methods in 
Numerical Mathematics, 3, 11-21. https://doi.org/10.20454/jmmnm.2012.281 

 
 

https://doi.org/10.4236/ajcm.2020.101007
https://doi.org/10.1016/j.amc.2012.06.062
https://doi.org/10.1007/s11075-015-9976-7
https://doi.org/10.1007/s10092-015-0144-1
https://doi.org/10.1016/j.cam.2012.03.030
https://doi.org/10.1016/j.cam.2017.07.036
https://doi.org/10.1007/s11075-009-9345-5
https://doi.org/10.1145/321850.321860
https://doi.org/10.1007/s11075-016-0191-y
https://doi.org/10.1016/j.amc.2009.03.077
https://doi.org/10.20454/jmmnm.2012.281

	Constructive Theory of Designing Optimal Eighth-Order Derivative-Free Methods for Solving Nonlinear Equations
	Abstract
	Keywords
	1. Introduction
	2. The Optimal Derivative-Free Three-Point Iterations
	3. Application of Sufficient Convergence Condition to Derive New DF Iterations
	4. Numerical Experiments
	5. Conclusion
	Acknowledgements
	Conflicts of Interest
	References

