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Abstract 
During the Mw9 Tohoku-Oki earthquake, gradual increases in both ionos-
phere total electron content (TEC) and geomagnetic declination signals were 
observed, starting from ~40 minutes before the mainshock, followed by impul-
sive enhancements ~10 minutes after the mainshock. There have been many 
studies on pre-seismic TEC enhancements, including their characteristics, de-
bates regarding whether TEC anomalies are real signals or artefacts, and the 
explainable models, and many studies have reported that the impulsive TEC 
enhancement was caused by a tsunami-induced neutral atmospheric gravity 
wave. Since TEC and geomagnetic declination anomalies were synchronized 
so that their origin should be attributed to the same seismic activities, any mod-
els must explain both anomalous phenomena, but not the case considered 
herein. Compared with the corresponding TEC anomalies, we re-examined 
the characteristics of geomagnetic variation just before and after the mainshock, 
focusing on the generation process of the impulsive enhancement immediately 
after the mainshock. We showed that the observed anomaly could be explained 
if there are quasi-static electric currents of 20 - 30 kA generated near the epi-
centre area. The possible mechanism of the current generation is discussed in 
terms of the ionization process in the atmosphere near the sea surface. 
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1. Introduction 

Whether detectable pre-seismic or pre-tsunamigenic anomalies exist and what 

How to cite this paper: Enomoto, Y., 
Heki, K., Yamabe, T., Sugiura, S. and Kon-
do, H. (2020) A Possible Causal Mechan-
ism of Geomagnetic Variations as Ob-
served Immediately before and after the 
2011 Tohoku-Oki Earthquake. Open Jour-
nal of Earthquake Research, 9, 33-49.  
https://doi.org/10.4236/ojer.2020.92003  
 
Received: January 22, 2020 
Accepted: March 7, 2020 
Published: March 10, 2020 
 
Copyright © 2020 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/ojer
https://doi.org/10.4236/ojer.2020.92003
https://www.scirp.org/
https://doi.org/10.4236/ojer.2020.92003
http://creativecommons.org/licenses/by/4.0/


Y. Enomoto et al. 
 

 
DOI: 10.4236/ojer.2020.92003 34 Open Journal of Earthquake Research 
 

methods, if any, can be used to identify precursor signals are of considerable 
concern from the viewpoint of active disaster prevention. Such a case occurred 
for the 2011 Mw9.0 Tohoku-Oki earthquake; that is, anomalous ionospheric dis-
turbances that appeared above the rupture zone immediately before and after the 
mainshock were revealed by high-resolution GPS total electron content (TEC) 
observation. Gradual positive TEC increases started from ~40 minutes before 
the mainshock [1], which followed the tsunamigenic impulsive TEC enhance-
ment above the ionospheric epicentre ~10 minutes after the shock. Then, con-
centric waves appeared to propagate in the radial direction [2] [3], leaving a 
tsunami ionospheric hole around the ionospheric epicentre [4] [5]. 

Note that synchronous with change in the ionospheric TEC signals, a similar 
anomaly appeared in geomagnetic declination change (ΔD); i.e., preseismic pos-
itive (eastward) increases starting from ~40 minutes before the mainshock up to 
~0.4 arcmin at stations closer to the epicentre, followed by an impulsive ΔD in-
crease ~10 minutes after the mainshock [6], although whether the ΔD anomalies 
were due to a space ionospheric magnetic storm [7] or a pre-seismic activity [8] 
is still being discussed. We believed that both the pre-seismic anomalies in TEC 
and ΔD satisfy the validation criteria in the “guidelines for the submission of 
earthquake precursor candidates” presented by Wyss [9], except for an under-
standing of the underlying causal mechanism [6] [10]. 

As for the possible mechanism, recent investigations based on an increase in 
our understanding of pre-seismic TEC anomalies have addressed how lithos-
pheric processes drive ionospheric disturbances via lithosphere-atmosphere- 
ionosphere (LAI) coupling. These models involve radon emanations, which 
would increase the conductivity of the atmosphere [11] [12]; excitation of at-
mospheric oscillations, i.e., atmospheric gravity waves, due to precursory 
changes of ground surface, which results in upward propagation [13]; magnetic 
induction coupling due to telluric currents driven by coupled interaction of qua-
si-static rupture of the earthquake nuclei with the deep Earth gases [14]; the io-
nospheric perturbation due to the global electric current between the bottom of 
the ionosphere and the ground surface [15], where the stressed rock at depth ac-
tivates hole charge carriers and is driven upward [16]; and E × B drift caused by 
the interaction of the electric field E produced in the ionosphere by the genera-
tion of positive charge at the ground surface due to stress with the magnetic field 
in the ionosphere B [17]. Note that fewer coseismic TEC variations occurred at 
the time of the earthquake, 05:46 UT, even as a stress drop as high as 30 MPa 
occurred around the hypocentre region [18] [19], suggesting that these pheno-
mena cannot be simply explained by stress-activation mechanisms. Any models 
have to provide a plausible explanation for both the observed precursor TEC and 
the ΔD anomalies. These phenomena remain largely unexplained. 

On the other hand, the impulsive TEC enhancement appeared ~10 minutes 
after the mainshock, and the depletion in ionosphere TEC variations that fol-
lowed has been explained in terms of a neutral atmospheric/acoustic gravity 
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wave in the atmosphere induced by tsunami uplift motion [20]. This model has 
been supported by many researchers; e.g. [1] [2] [3] [4] [21] [22]. Note that the 
tsunami generated by the 2011 Tohoku-Oki earthquake was characterized by 
two phases: a long period sea level change and a subsequent short-period impul-
sive wave [23]. The source of the former was the vertical displacement of the sea 
floor due to the earthquake, whereas that of the latter was most likely submarine 
mass failure, i.e., submarine landslide [24]. In the previous studies, which of the 
two types of tsunami was involved in the formation of TEC impulses is unclear. 
Furthermore, how the generation of the electrically neutral acoustic wave is re-
lated to geomagnetic declination anomalies that were simultaneously observed 
with ionospheric TEC variations remains unexplained. Therefore, in order to 
clarify some of these uncertainties, we re-examined the spatiotemporal geomag-
netic variations, observed at various sites located throughout Japan, before and 
after the 2011 Tohoku-Oki earthquake, referencing the corresponding ionos-
pheric vertical TEC (VTEC) variations. 

2. Data 

The geomagnetic data on March 11 when the 2011 Tohoku-Oki earthquake oc-
curred were obtained from 15 Japanese geomagnetic observatories as shown in 
Figure 1(a). The sampling interval of these data is 1 minute. In order to correct 
the effect of geomagnetic variations of external origin, the geomagnetic data ob-
tained from KNY, which is located about 1300 km distant from the epicentre, 
was chosen as a reference. We denote the difference between the geomagnetic 
declination D at ESA and that at KNY as ΔD. The corresponding ionospheric 
VTEC data used to compare with the geomagnetic data are reported elsewhere 
in detail [6]. 

3. Results 
3.1. Geomagnetic Observations 

Figure 1(b) & Figure 1(c) show the spatiotemporal geomagnetic declination 
variations (ΔDs) during the period of 4:00-8:00 UT on 11 March 2011 at various 
observation sites relative to KNY arranged in descending order of proximity to 
the epicentre. The background levels, shown by red lines, were determined by 
fitting with quartic functions during the time period of 4:00-8:00 UT, except for 
5:00-6:00 UT, when seismic disturbances occurred. The results showed that the 
pre-seismic ΔD increases are larger because they are closer to the epicentre. 
Among these values, the ΔD variation at MMB, the northernmost site as can be 
seen in Figure 1(a), appears to have fluctuated exceptionally, even outside the 
time period affected by the earthquake (5:00-6:00), where the signal might be 
contaminated by an ionospheric magnetic storm (see Appendix A). 

Figure 1(c) shows ΔD variations from backgrounds at HAR, ESA, and MIZ 
compared to KNY, which are located closer to the epicentre. Note that ΔD at 
HAR, which is closest to the epicentre, suddenly decreased during the earthquake.  
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Figure 1. (a) Map of the geo-magnetic observation sites. The rectangle with the solid outline represents the 
rupture zone, and the red star represents the epicentre of the Mw9 mainshock. (b) Spatiotemporal ΔD varia-
tions at various observation sites relative to KNY during the period of 4:00-8:00 UT on 11 March 2011 ar-
ranged in descending order of proximity to the epicentre. The numbers in the vertical axis and the paren-
theses on the right-hand side are the distances in kilometres from the epicentre to the observation sites. The 
background levels shown by the red lines are determined by fitting with quartic functions during the time 
period of 4:00-8:00 UT, except for the seismically disturbed period of 5:00-6:00 UT. (c) The ΔD variations 
from background at HAR, ESA, and MIZ, which were located closer to the epicentre, as compared to KNY. 
The sudden decrease at HAR as compared to KNY at the time of the earthquake should be attributed to the 
sensor being shaken by the seismic vibration. The maximum height of the impulse ΔD from the back-
ground is denoted as ΔDp.  

 
This is thought to be due to the sensor being shaken by the seismic vibration 
[25]. These are well-highlighted phenomena, whereby the gradual eastward 
preseismic increases in ΔD were started from ~40 minutes until the mainshock 
at 5:46 UT, and the amount of variation of ΔD values from the background 
reached 0.4 arcmin at the time 1 minute before the earthquake occurrence. 
Then, without any notable coseismic change in the ΔD signal, immediately after 
the mainshock, the impulsive ΔD signal suddenly increased from 5:53 UT, 
reaching a maximum of as high as 0.6 arcmin at 5:57 UT, and then suddenly de-
creased. Since the ΔD signal at HAR shows irregular noise, even outside the pe-
riod of seismic disturbance of 5:00-6:00 UT, we used the geomagnetic data at 
ESA or MIZ to examine the characteristics just before and after the mainshock 
in detail. 

Figure 2 shows ΔD and the ΔH (horizontal) and ΔZ (vertical) components at 
ESA as compared to KNY during 4:30-6:30 UT. The coseismic change at 5:46 UT 
in ΔH and ΔZ might be attributed to the sensor being shaken by the seismic vi-
bration, such as that at HAR. Note that when the impulsive ΔD increased from  
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Figure 2. ΔD, ΔH, and ΔZ components at ESA as compared to KNY during 4:30-6:30 UT 
on 11 March 2011. 
 
5:53 UT and then reached a maximum at 5:57 UT, ΔH decreased, but ΔZ was 
unchanged. Similar changes were observed at MIZ as compared to KNY. After 
the impulse, ΔD reached a maximum, and the ΔZ value then decreased rapidly 
until 6:11 UT. Note that the arrival time of the first wave of the tsunami at Ofu-
nato (a port town located approximately 50 km east of ESA) was 15:15 LT (6:16 
UT).  

3.2. Ionospheric TEC Observations 

The ΔD variations described above were compared to the ionospheric VTEC 
variations: As shown in Figure 3(a), the VTEC changes for 4:00-7:30 UT ob-
served at six stations with satellite #26: 940049, 950241, 95072, 950228, 950154, 
and 95156. Figure 3(b) shows the trajectories of sub-ionospheric points (SIP) 
assuming a thin layer at an altitude of 300 km during 4:00-7:30 UT. The VTEC 
anomalies that showed clear positive enhancements started from ~40 minutes 
before the mainshock [1], at the SIPs above the epicentre and at those above the 
ESA observation site, but were not clear further north from the north end of the 
rupture zone. Note that the VTEC anomalies immediately before and after the 
mainshock for the SIPs closer to the epicentre (950228 and 950272) are similar 
to the ΔD anomaly at ESA as compared to KNY, but this is not the case for the 
anomalies closer to the ESA observation site; that is, the impulse TECs did not 
appear in the SIPs above the ESA site. This indicates that the ionospheric varia-
tion above the ESA site has less effect on the ΔD anomaly observed at the ESA 
site, which is consistent with the results described in Appendix A. In other  
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Figure 3. (a) Vertical TEC variations observed during 4:00-7:30 UT 11 on March 2011 at following 
sites: closer to the epicentre, 950228 and 950272; closer to ESA, 950241 and 940049; and off the north 
end of the rupture zone, 950154 and 950156. (b) Respective trajectories of sub-ionospheric points 
(SIPs) assuming a thin layer at an altitude of 300 km (grey lines). The rectangle with the solid outline 
represents the rupture zone, and the black star represents the epicentre of the Mw9 mainshock. The ♦ 
symbols on the SIPs indicate points at which the earthquake occurred, and the ▴ symbols indicate 
points at which the impulse TEC peak appeared. Black circles indicate the geomagnetic observation site 
in the northern area of Japan. (cf. Figure 1(c)). ΔD at ESA (blue curve) is also shown in Figure 1(a) for 
comparison. 

 
words, both VTEC and ΔD anomalies during the period of ~5:00-6:00 UT were 
not affected by an ionospheric magnetic storm. Furthermore, note that the peak 
time of the impulsive ΔD signal at ESA is 5:57 UT, which agrees exactly with 
that of the impulsive VTEC signal. 

Then, ~10 minutes after the mainshock (5:57 UT), impulsive enhancements as 
high as ~3 TEC units (1 TEC unit is 1016 electron/m2) appeared, as shown in 
Figure 3(a) for SIPs for 950228 and 950272 (Figure 3(b)), followed by a sudden 
depletion at approximately 6:00 UT. According to Saito et al. [2] and Tsugawa et 
al. [3], concentric waves appeared to propagate in the radial direction with a ve-
locity of 138 to 3457 m/s after impulsive TEC enhancement appeared at the io-
nospheric epicentre. 

In addition, an impulsive VTEC peak at 950272 appeared at 6:00 UT, which is 
3 minutes after the peak time at 950228, at which the propagation velocity is es-
timated as 2828 m/s, which agrees with the velocity range determined by Tsu-
gawa et al. [3]. 

4. Discussion and Summary 

In light of the above results, we re-confirmed that the ΔD variations at ESA and 
MIZ as compared to KNY during 5:00-6:00 UT, immediately before and after the 
mainshock, were not originated by the ionospheric magnetic storm, but pre-
sumably by seismic activities near the epicentre. 

Next, we consider the precursor geomagnetic variation during 5:06-5:46 UT. 
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Thus far, geomagnetic variation associated with the earthquake has been ex-
plained either as a result of the stress-induced piezo effect: e.g. [26] [27] or that 
of a magnetic field generated due to an electric current, as given by the Bi-
ot-Savart law: e.g. [28] [29]. The coseismic electromagnetic change due to the 
piezomagnetic effect around the outer edge of the rupture zone in the 2011 To-
hoku-Oki earthquake, as theoretically estimated by Utada et al. [22], is at most 1 
nT at the outer edge of the rupture zone and should be much smaller at ESA, 
which is 70 km from the outer edge of the rupture zone. Therefore, the piezo-
magnetic effect could not explain the observed |H| variation of ~2 nT at ESA. 
The magnetic field change at ESA should therefore be attributed to electric cur-
rent generation. 

Next, we investigate the electric current source. In order to investigate the 
possible source mechanism of the electric current, we consider the most promi-
nent geomagnetic variation of the impulse signals of ΔD (hereafter noted as 
ΔDp), the peak time of which (5:57 UT) agreed with that of the VTEC near the 
epicentre. The matching of the occurrence time between the impulse ΔDp at ESA 
and the impulse VTEC at the ionospheric epicentre suggests that the electric 
current should be generated during the process in association with the ionos-
pheric epicentre formation. The results, as shown in Figure 2, that the impulsive 
ΔD increased from 5:53 UT to a maximum at 5:57 UT, while ΔH decreased, but 
ΔZ was unchanged, could be explained if we assume that the acoustic gravity 
wave was accompanied by tsunami-carried positively charged particles. In other 
words, a transient electric current flowed upward from the ocean around the ep-
icentral area to the lower ionosphere during the period of 5:53-5:57 UT, where 
the current induced the counterclockwise magnetic field to reduce the |H| com-
ponent and increase the declination, but did not change the |Z| component at 
ESA or MIZ as compared to KNY (see Figure 4(a)). 

 

 
Figure 4. (a) Geometric illustration with an assumed line current flowed upward from 
epicentre, and relationship between ΔD, H and dB. (b) The impulse ΔD peaks at various 
sites observed at 05:58 UT are indicated by ● symbols, and those estimated from Equation 
(1) and Equation (2) using the |H| values at each site averaged for 5 min before 5:46 UT, 
when the seismic anomalies started, are indicated by + symbols. The solid line represents 
the 1/R relationship approximating the estimated values. 
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The reason why acoustic gravity waves are electrically charged will be dis-
cussed later. Next, we estimate the current needed in order to explain the im-
pulse ΔD at ESA. Assuming simply that a transient line current flowed straight 
upward from the epicentral ocean area to the lower ionospheric altitude of 300 
km, we can estimate geomagnetic field |dB| induced by current I using the Bi-
ot-Savart law: 

0  
d cos

4
I
R

µ
θ

π
=B                          (1) 

where μ0 is the permittivity of free space (μ0 = 4π × 10−7 Wb/(Am)). R and θ are 
shown in Figure 4(a). Using Equation (1), ΔD estimated as 

[ ] [ ] [ ]D rad d nT nT∆ = B H .                  (2) 

Using ESA’s |H [nT]| (=29,001.2 nT), the calculated current that matches the 
observed value of peak value of impulse ΔD of 1.134 arcmin = 0.00333 rad from 
Equation (1) and Equation (2) is estimated as 20,000 A. The diameter of the 
cross-sectional area of the current is assumed to be 300 km, which is comparable 
to the size of the ionospheric TEC epicentre, and the current density is estimated 
as 280 pA/m2, which is approximately 100 times as large as the atmospheric cur-
rent flowing through fair weather [30]. 

As shown in Figure 4(b), the peak values of ΔD including other far observa-
tion sites agree with calculated values with a current of 30,000 A, rather than 
20,000 A. This is probably because the impulse ΔD peak values at KAK, KNZ, 
and OTA have not decreased much, despite being far from the epicentre. These 
results are possibly because interlocking of heterogeneous plate coupling ex-
tended on southern asperities of the rupture zone [31], so that additional current 
flows at these areas might influence ΔDs at KAK, KNZ, and OTA. 

Next, we discuss how these currents are generated. In other words, we discuss 
why charged particles were generated on the sea surface near the epicentre. Note 
that when the earthquake occurred, a long-period tsunami was generated due to 
the vertical displacement of the sea floor, and subsequently the short-period 
impulsive tsunami wave followed due to submarine mass failure, i.e., submarine 
landslide at a steep cliff near the trench axis [24]. Moreover, note that the im-
pulse tsunami might induce impulsive variation of magnetic field as observed by 
an ocean-bottom magnetometer (OBEM) placed 50 km east of the Japan trench 
[32]. The magnetic impulse might have been induced by the tsunami dynamo 
effect [33]. The peak time of the magnetic impulses of the X, Y, and Z compo-
nents observed by OBEM was 05:53-05:54 UT, which agreed with the signal rise 
time of ΔD at ESA (~3 minutes before the peak time of ΔDp). 

Severe ocean floor motion near the epicentre might have erupted large 
amounts of biogenic methane bubbles accumulated in the sediment. In fact, the 
deep-sea submersible “Shinkai 6500” revealed the appearance of fissures and 
bacterial mats, which were associated with gas ebullition associated with the 
2011 Tohoku-Oki earthquake [34]. Methane bubbles uplifted with the move-

https://doi.org/10.4236/ojer.2020.92003


Y. Enomoto et al. 
 

 
DOI: 10.4236/ojer.2020.92003 41 Open Journal of Earthquake Research 
 

ment of rapid seawater rise along steep slopes near the trench axis and then 
broke at the sea surface, which resulted in the generation of positively charged 
mists in air on the sea surface [35] [36]. Another possible primary process is the 
ionization of the air produced by an increased emanation of radon/other gases 
from faults in the vicinity of the epicentre [11]. 

When charged mists flow upward, as a result of the uplift motion driven by an 
impulsive tsunami, in the atmosphere at the altitude above approximately 1 km, 
where water vapour in the atmosphere is likely to be in a supersaturated state, a 
current path is expected to be visualized as a standing cloud formation due to 
the Wilson’s cloud chamber effect [37] (see Appendix B). The cloud is then 
forced to swirl by hydro-magnetic instability in which the interaction between 
the current and its magnetic confining field tend to cause kink instability of the 
current flow. In fact, as reported in the Kahoku-Shimpo newspaper on 13 April 
2011 that three well-developed blackened tornado-like clouds standing offshore 
in the direction of the epicentre were witnessed from the rooftop of a school 
building in Natori City, located at the sea side approximately 70 km west of the 
epicentre, just before the initial tsunami arrival time of 6:01 UT [38] (see the 
black tirbado-like cloud sketch in  
http://memory.ever.jp/tsunami/shogen_natori.html). Since the impulsive in-
creases in both the ΔD at ESA and the TEC signals observed at the 950272 site by 
satellite #26 started at 5:53 UT and reached a peak at 5:57 UT. These clouds may 
have developed around the same time period of 5:53-5:57 UT. The eyewitness 
report might be evidence to support the lithosphere-hydrosphere-atmosphere- 
ionosphere (LHAI) coupling model via atmospheric current flow (see also Ap-
pendix B). 

It is known that thunderstorms act as current generators to drive electric cur-
rents upward through the conductive atmosphere toward the ionosphere, prop-
agate outward in the ionosphere, and finally connect to downward currents 
closing a global electric circuit [30]. Similarly, the electromagnetic anomalies, as 
observed by geomagnetic and TEC observations that occurred immediately after 
the 2011 Tohoku-Oki earthquake, could be said to be phenomena related to a 
global electric circuit formed by the flow of electric charge driven by the impulse 
tsunami. Tornado-like clouds [33] and the concentric TEC wave propagation [2] 
[3] are parts of the visualized global electric circuit. 

Finally, returning to the precursor phenomena, we will discuss the possible 
cause of precursor variations in ΔD and TEC. From the analysis of GPS data, the 
crustal displacement in the E-W direction has been observed in the coastal area 
near the epicentre approximately 3 hours before the earthquake [39]. This sug-
gests that the seabed near the epicentre had become unstable due to quasi-static 
rupture of the earthquake nucleation zone, and therefore bacterial methane gas-
es were likely to be released from the sediments of the seafloor. A video that ap-
peared to have captured a similar phenomenon was captured near the Sanriku 
coast just after the 2011 Tohoku earthquake (Appendix B). If the phenomenon  
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Figure 5. Schematic diagram of the process concerning the anomalous geomagnetic 
phenomena immediately before and after the 2011 Tohoku-Oki earthquake. 
 
described above starts to become noticeable around approximately 40 minutes 
before the earthquake, there is a possibility that positively charged mists gener-
ated by the Blanchard effect will float in the atmosphere near the sea surface and 
gradually accumulated. In this case, the LAI coupling models [15] [17], assum-
ing the positive charged ground could be applicable as LHAI coupling for the 
precursor ΔD and VTEC anomalies in the Tohoku-Oki earthquake, although 
any quantitative explanation of ΔD variation still remain to be explained in their 
models. Confirmable scientific evidence was not available for tornado-like 
clouds and charged mists that may have occurred near the epicentral area, but 
supporting photographs for these phenomena associated with 2011 Tohoku-Oki 
earthquake are available, as shown in Appendix B. 

In light of the above discussion, we summarize the proposed process con-
cerning a series of ΔD and the TEC anomalies immediately before and after the 
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mainshock: a gradual increase in the ΔD and TEC signals starting approximately 
40 minutes before the 2011 Tohoku-Oki earthquake, followed by the impulsive 
enhancements that appeared approximately 10 minutes after the earthquake, as 
shown by the schematic diagrams in Figure 5(a) through Figure 5(d). 
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Appendix A 

We revisit on the argument of for whether the precursor ΔD variation is due to 
ionospheric magnetic storm or due to seismic precursor activity. Utada and 
Shimizu [7] reported that ΔD variations during the precursor period of 5:10-5:46 
UT on the day that the 2011 Tohoku-Oki earthquake occurred, referred as the 
ΔD1 episode by Utada & Shimizu [7], were caused by a magnetic storm, because 
there is a correlation between the latitude dependence of ΔD1 and that of the 
typical storm-time disturbance ΔD during the time period of 21:10-21:30 UT on 
the same day, referred as ΔD4, among the observation sites, MMB, AKA, ESA, 
HAR, OTA, KAK, TTK, and CBI (see Figure 1(a), and three other sites that be-
long to the Earthquake Research Institute, University of Tokyo (not shown in 
Figure 1(a)). However, correlation in general does not imply causation [A1]. In 
fact, ΔD showed similar time dependences, i.e., increase with time for both ΔD1 
and ΔD4, episodes at both MMB vs KNY and ESA vs KNY, whereas the geo-
magnetic inclination ΔI showed dissimilar time-dependence in the correspond-
ing episodes at both MMB vs KNY and ESA vs KNY as shown in Figure A1(a). 
Both episodic variations ΔD1 and ΔD4 at MMB are likely to have been affected 
by a magnetic storm, as the background natural variability is the highest at MMB 
[8]. 
 

 
Figure A1. (a) Geomagnetic auroral electrojet (AE) index with a sampling interval of 1 
min during 10-12 March 2011 (http://wdc.kugi.kyoto-u.ac.jp/aedir/). (b) ΔD and ΔI at 
MMB and ESA as compared to KNY with a sampling interval of 1 min on 11 March 2011. 
Shadowed areas indicate ΔD1 (5:10-5:46 UT) and typical storm-time disturbance ΔD4 
(21:10-21:30 UT).  
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Furthermore, note that, as shown in the geomagnetic auroral electrojet (AE) 
index (http://wdc.kugi.kyoto-u.ac.jp/aedir/) 10-12 March 2011 in Figure A1(b), 
the precursor ΔD1 episode on the earthquake day (11 March) overlapped less 
with substorm periods of auroral activities and was rather calm. 

The results which indicate positive increases in ΔD1 are more enhanced as the 
locations of the observation sites approach the epicentre, indicating that the ori-
gin for the precursor ΔD1 increases should be attributed to electromagnetic ac-
tivity in the imminent earthquake preparation process generated near the epi-
central area. 

Reference 
[A1] Altman, N. and Krzywinski, M. (2015) Association, Correlation and Causation. 

Nature Method, 12, 899-900. 

Appendix B 

We describe additional information about the occurrence of mists due to bubble 
collapse and the generation of tornado-like cloud on the sea as illustrated in 
Figure 5. On the day of the 2011 Tohoku-Oki earthquake, a whitish bubbled sea 
surface suddenly appeared off the coast of several kilometres away from Natri 
City (Figure B1(a) and Figure B1(b)) after NHK TV video imagery from “Kuori 
tsunami shirarezaru jituzo (in Japanese) which means black tsunami, unknown  
 

 
Figure B1. (a) Generation and (b) propagation of whitish-bubbled tsunami water at 7:12 UT on 11 
March as photographed in the 2011 Tohoku-Oki earthquake offshore of Sendai Bay, Natori city 
(see Figure 1(a)). Note that tsunami waters covered by smoke/mists (see arrows) are pushing nu-
merous bubbles as they rush toward the shore. NHK TV video imagery from “Kuroi tsunami shi-
rarezaru jituzo (in Japanese)” (Black tsunami, unknown fact images), which aired on March 3, 
2019. (c) (d) A tornado-like cloud captured off the coast of Kinkazan at a squared area ure by 
ALOS satellite DAICHIure. 
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fact images, which aired on 3 March, 2019. The sea level rose violently, and the 
tsunami, with rising mists, propagated toward the coast, bearing bubbles in the 
tsunami front, possibly due to the wind enhancement of tsunami-induced per-
turbations [20]. 

There was a satellite image of a tornado-like cloud. Around 1:25 UT on 24 
March 2011, when the aftershock activities related to the 2011 Tohoku-Oki 
earthquake was active, the ALOS satellite Daichi observed a tornado-like cloud 
standing off the coast of Kinkazan as shown in Figure B1(c) and Figure B1(d).  

These images are evidence supporting the model that demonstrated the oc-
currence of the mists and tornado-like clouds that are mentioned in the discus-
sion. 
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