
Open Journal of Applied Sciences, 2020, 10, 60-68 
https://www.scirp.org/journal/ojapps 

ISSN Online: 2165-3925 
ISSN Print: 2165-3917 

 
DOI: 10.4236/ojapps.2020.103005  Mar. 6, 2020 60 Open Journal of Applied Sciences 
 

 
 
 

Periodic Solitary Wave Solutions of the  
(2 + 1)-Dimensional Variable-Coefficient 
Caudrey-Dodd-Gibbon-Kotera-Sawada 
Equation 

Yang Zhou 

College of Science, University of Shanghai for Science and Technology, Shanghai, China 

 
 
 

Abstract 
In this paper, through symbolic computations, we obtain two exact solitary 
wave solitons of the (2 + l)-dimensional variable-coefficient Caudrey-Dodd- 
Gibbon-Kotera-Sawada equation. We study basic properties of l-periodic so-
litary wave solution and interactional properties of 2-periodic solitary wave 
solution by using asymptotic analysis. 
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1. Introduction 

Nonlinear evolution equations appear in many fields of physics, such as fluids, 
quantum mechanics, condensed matter, superconductivity and nonlinear optics. 
Due to the fact that most systems in nature are complicated, many nonlinear 
evolution equations may possess variable coefficients. Recently, the investigation 
on exact solutions of the variable-coefficient nonlinear evolution equations has 
become the focus in the study of complex nonlinear phenomena in physics and 
engineering [1] [2] [3] [4].  

In this paper, we study the (2 + 1)-dimensional variable-coefficient Caud-
rey-Dodd-Gibbon-Kotera-Sawada (vc-CDGKS) Equation (see [5] [6])  
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where ( )i ia a t= , ( )1,2, ,9i =   are analytical functions with respect to the va-
riable t. When ( )1 1a t = − , ( ) ( ) ( ) ( ) ( ) ( )2 3 4 5 7 8 5a t a t a t a t a t a t= = = = = = − , 

( )6 5a t = , ( )9 0a t =  and ( )1 1a t = − , ( )2 25 2a t = − ,  
( ) ( ) ( ) ( ) ( )3 4 5 7 8 5a t a t a t a t a t= = = = = − , ( )6 5a t = , ( )9 0a t = , two reduced 

(2 + 1)-dimensional equations were first proposed by Konopelchenko and Du-
bovsky through Lax pairs [7]. When ( )1 1 36a t = , ( ) ( )2 3 5 12a t a t= = , 

( )4 5 4a t = , ( ) ( )5 6 5 36a t a t= = − , ( ) ( )7 8 5 12a t a t= = − , ( )9 0a t = , the 
vc-CDGKS Equation (1.1) becomes the (2 + 1)-dimensional constant-coefficient 
Caudrey-Dodd-Gibbon-Kotera-Sawada equation appeared in [8] [9] [10]. 

For the vc-CDGKS Equation (1.1), the bilinear form, bilinear Bäcklund trans-
formation, Lax pair and the infinite conservation laws have been studied by Bell 
polynomials in [5] and N-soliton solutions have been constructed with the help 
of the Hirota bilinear method. In [6], non-traveling lump and mixed lump-kink 
solutions were investigated by Hirota bilinear form and symbolic computational 
software of Maple. 

In this paper, we consider periodic solitary wave solutions of the (2 + 
1)-dimensional vc-CDGKS Equation (1.1). The periodic solitary wave solution 
in this paper comes from Zaitsev [11] and this kind of solution is periodic in the 
direction of propagation and decays exponentially along the transverse direction. 
In [12] [13], some generalizations were given and the interactions between two 
y-periodic solitons were studied for the (2 + 1)-dimensional Kadomt-
sev-Petvinshvili equation. The periodic solitary wave solutions of the (2 + 
1)-dimensional Sawada-Kotera equation, the (2 + 1)-dimensional KP I equation 
and the (3 + 1)-dimensional Jimbo-Miwa equation were studied in [14] [15] 
[16], respectively. In this paper, we present some generalizations and interac-
tional properties between two periodic solitons for the (2 + 1)-dimensional 
vc-CDGKS Equation (1.1). The interactional properties will be analyzed based 
on the ideas in [17] [18], where the analysis was performed for con-
stant-coefficient equations. 

In the following section, we deduce the 1-periodic solitary wave solution 
which is periodic in the direction of one curve and decays exponentially along 
the proper transverse direction of the corresponding curve. We analyze the 
propagating curve and the center of the periodic solutions. We also deduce the 
2-periodic solitary wave solution which is periodic in the direction of two curves 
and decays exponentially along two proper transverse directions of the corres-
ponding curves. The interactional properties with ( ) 2 2

1
na t t −=  and ( ) 2 1

1
na t t −=  

for 1,2,n =   are analyzed separately. 

2. Periodic Solitary Wave Solutions of the  
(2 + 1)-Dimensional vc-CDGKS Equation 

In this paper, we study periodic solitary wave solutions of the (2 + 
1)-dimensional vc-CDGKS Equation (1.1) with the following constraints in 
[5]  
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where 0c  and 1c  are nonzero real constants. 
To obtain periodic solitary wave solutions, by using of the transformation in 

[5]  
( ) ( )9 d

02 e lna t t
xxu c G−∫= ,                      (2.2) 

with 
1 2 1 2 121 e e e AG η η η η+ += + + + ,                   (2.3) 
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we can get two types of solitary wave solutions of the (2 + 1)-dimensional 
vc-CDGKS Equation (1.1), where 

( ) 0jj j j j jk x k y tpη ω η= + + + ,                 (2.5)  

( ) ( ) ( )3 2 2
1 1 1

5 5 5 dj j j j j jp k pt tk c k c a tω = − + − ∫ ,         (2.6) 
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=
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(2.7) 

and jk , jp  and 0jη  are arbitrary constants. 
In the following discussion, we let ( )9 0a t =  for G in (2.3) and (2.4) and we 

can obtain 1-periodic and 2-periodic solitary wave solution of the (2 + 
1)-dimensional vc-CDGKS Equation (1.1) by choosing special parameters of jk  
and jp  ( )1,2,3,4j = . 

2.1. 1-Periodic Solitary Wave Solution 

In order to get 1-periodic solitary wave solution of the (2 + 1)-dimensional 
vc-CDGKS Equation (1.1), we take parameters jk , jp  and 0jη  for 1,2j =  
in (2.3) as 

*
1 1 1 2k i kα β= + = , *

1 1 1 2p i pγ δ= + = , *
10 1 1 20iη σ ϕ η= + = ,     (2.8)  

where 1α , 1β , 1γ , 1δ , 1σ  and 1ϕ  are real constants. Substituting (2.8) into 
(2.3), we obtain  

( )1 12
1 11 2e cos eR R

IG Kη ηη= + + ,                 (2.9) 

where 

( ) ( )1 1 1 1 1 1 1 1 1dR Rx y a ttη α α γ β δ ω σ= + − + +∫ ,         (2.10) 
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( ) ( )1 1 1 1 1 1 1 1 1dI Ix y a ttη β β γ α δ ω ϕ= + + + +∫ ,            (2.11) 
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   (2.13) 

Substituting (2.9) into (2.2), with 1 1K > , we get a nonsingular exact solution 
of the (2 + 1)-dimensional vc-CDGKS Equation (1.1) 

( )
( ) ( )

2 2 2 2
1 1 1 1 1 1 1 1

0 2

1 1 1 1

2
2

cosh ln cosR I

K K A B
u c

K K

α β α β α β

η η

 − + − + =
 + + 

,          (2.14) 

where ( ) ( )1 1 1cosh ln cosR IA Kη η= +  and ( ) ( )1 1 1sinh ln sinR IB Kη η= + . 
The above solution describes a sequence of lumps, which is periodic in the di-

rection of 1 1ln 0R Kη + = . 
The centers of the lumps are located at 

1 1ln 0R Kη + = , ( ) ( ) ( )2 2 2 2 2
1 1 1 1 1 1 1 12 cos 0I K Kβ η α β α β− − + =− . (2.15) 

The lumps decay exponentially along the proper transverse direction and this 
exact solution is called the 1-periodic solitary wave solution. The plots of the solu-
tion at 0y =  are given in Figure 1 for ( )1 1a t = , ( )1a t t=  and ( )1 cos 4a t= , 
respectively. 

2.2. 2-Periodic Solitary Wave Solution 

In order to obtain 2-periodic solitary wave solution of the (2 + 1)-dimensional 
vc-CDGKS Equation (1.1), we take parameters jk , jp  and 0jη  for 1,2,3,4j =  
in (2.4) as 

* * *
1 1 1 2 3 2 2 4 1 1 1 2

* * *
3 2 2 4 10 1 1 20 30 2 2 40

, , ,

, , ,

k i k k i k p i p

p i p i i

α β α β γ δ

γ δ η σ ϕ η η σ ϕ η

= + = = + = = + =

= + = = + = = + =
     (2.16)  

where jα , jβ , jγ , jδ , jσ , jϕ  ( )1,2j =  are real constants. In order to 
analyze the asymptotic properties of the solutions, we rewrite the function G in 
(2.4) as 
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(2.17) 

where  
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(a) 

 
(b) 

 
(c) 

Figure 1. Plots of the 1-periodic solitary wave solutions (2.14) of the vc-CDGKS Equation 
(1.1) with 1 1 2α = , 1 3 5β = , 1 2 3γ = , 1 4 5δ = , 1 1 6σ = , 1 1ϕ = , 10 1c c= = . (a) 

1 1a = ; (b) 1a t= ; (c) ( )1 cos 4a t= . 

 

( ) ( )1 dj j j j j jjR jRx y a ttη α α γ β δ ω σ= + − + +∫ ,           (2.18)  

( ) ( )1 dj j j j j jjI jIx y a ttη β β γ α δ ω ϕ= + + + +∫ ,           (2.19)  
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Substituting (2.17) into (2.2), we can get 2-periodic solitary wave solution of 
the (2 + 1)-dimensional vc-CDGKS Equation (1.1), which is composed of two 
sequences of lumps and the lumps decay along two directions. 

In the following we study the interactional properties of this solution by using 
asymptotic analysis. Without loss of generality, we assume 1 0α > , 2 0α > , and 

1 2 2 1 0R Rα ω α ω− > . 
Case (1): Let ( ) 2 2

1
na t t −= , 1,2,n =  , and we get  

( ) ( )
( ) ( )

1 1 1 2 2 2

1 1 1 2 2 2

, , ,

, , ,

P p

P p

t

t

u u
u

u u
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→ +∞
         (2.24) 

where 
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( )2 2 2 2

0 2
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j jK K
u c j

K
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Λ + Γ

Λ Γ
=

 
   

(2.25) 

with 

11 1lnR Kη−Λ += , 1 1Iη−Γ = , 11 1 1 2lnR K d dη+ + + +Λ = , 1 1 1 2I b bη+Γ = + + , 

22 1 22lnR K d dη− + + +Λ = , 2 2 1 2I b bη−Γ = + + , 22 2lnR Kη+Λ += , 2 2 Iη+Γ = . 

From the above analysis, we find that the shifts of the 2-periodic solitary 
waves before and after interactions are 1 2d d+ .  

Case (2): Let ( ) 2 1
1

na t t −= , 1,2,n =  , and we get  

1 2

1 2

,
,

u u
u u

t
t

u
→ −∞+

+ ∞
→  → +

 

 

                    (2.26) 

where 1u  and 2u  are defined by ( )1 1 1,Pu + +Λ Γ  and ( )2 2 2,Pu + +Λ Γ , respectively. 
We find that there is no shift for the 2-periodic solitary waves before and after 
interactions. 

Taking the following set of parameters  

1 1 2 2 1 1 2

2 1 1 2 2 0 1

1 3 2 7 2 4 7, , , , , , ,
2 5 3 8 3 5 100
1 1 1 1, , 1, , , 1
3 6 3 2

c c

α β α β γ δ γ

δ σ ϕ σ ϕ

= = = = = = =

= = = = = = =
    (2.27) 
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The plots of the 2-periodic solution are given in Figure 2 for ( )1 1a t = , 
( )1a t t=  and ( )1 cos 4a t= , respectively. 

3. Conclusion 

In this paper, we considered periodic solutions of the (2 + 1)-dimensional variable  
 

 
(a) 

 
(b) 

 
(c) 

Figure 2. Plots of the 2-periodic solutions of the vc-CDGKS Equation (1.1). (a) 
( )1 1a t = ; (b) ( )1a t t= ; (c) ( )1 cos 4a t= . 
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coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada equation by using of two so-
litary wave solutions. By selecting different ( )1a t , we study basic properties of 
1-periodic wave solution and interactional interactions of 2-periodic wave solu-
tion with asymptotic analysis method theoretically and graphically. 
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