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Abstract 
Quinoline analogues exhibited diversified biological activities depending on 
the structure type. A number of natural products with pyrano[3,2-c]quinolone 
structural motifs and patented chromenes were reported as promising cyto-
toxic agents. A molecular docking study was employed to investigate the 
binding and functional properties of 3-amino pyranoquinolinone 2a-c as an-
ti-cancer agents. The three 3-amino pyranoquinolinone 2a-c showed an in-
teresting ability to intercalate the DNA-topoisomerase complex and were able 
to obtain energetically favorable binding modes (−8.3 - −7.5 kcal/mol). 
Compound 2c containing butyl chain superiority over the other two com-
pounds 2a-b which appeared to be involved in arene-H interactions with the 
two dG13 aromatic centers. The butyl chain also appeared to be immersed 
into a side subpocket formed by the side chains of Asn520 and Glu522 and 
the backbone amide of Arg503, Gly504, Lys505 and Ile506. Hence, the 
3-amino pyranoquinolinone 2c used as starting material to prepare deriva-
tives of pyrano[3,2-c]quinolone containing 1,2,4-triazine ring 4a-b which will 
enhance the anti-cancer activity. Pyrano[3,2-c]quinoline-2,5-diones 2a-c and 
4a-b were evaluated in vitro on cell lines Ehrlich Ascites carcinoma cells 
(EAC), liver cancer cell line Hep-G2 and breast cancer cell line MCF-7 for 
the development of novel anticancer agents. The screening results revealed 
that compounds 4a-b were found most active candidates as anticancer 
agents. 
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1. Introduction 

Over the past few years, several quinoline containing compounds are reportable 
as potential antitumor agents. Further, Quinoline scaffold plays a crucial role in 
antitumor drug development as their derivatives have shown excellent results 
through different mechanism of action such as growth inhibitors by cell cycle 
arrest, apoptosis, inhibition of angiogenesis, disruption of cell migration, andmo 
dulation of nuclear receptor responsiveness. The anti-cancer potential of many 
of these derivatives has been demonstrated on various cancer cell lines. The 
strength of quinoline motif in anticancer drug development is evident from 
clinically used anticancer drugs like Camptothecin, Topotecan and Irinotecan, 
etc. [1]. 

Pyranoquinolones and fused pyrano[3,2-c]quinolone moities are widely 
available in bioactive natural products, synthetic products as well as pharma-
ceutical agents [2]. Pyrano[3,2-c]quinolones are primarily notable for their anti-
cancer activity [3] [4], along with antimalarial [5], antibacterial [6], antiinflam-
matory [7], and antifungal [8] properties. Pyrano[3,2-c]quinolone is a core 
structural motif present in many alkaloids possessing important therapeutic ac-
tivities [9]. For instance, huajiaosimuline (A, Figure 1), a potent and selective 
anticancer agent towards breast cancer, and zanthosimuline (B, Figure 1), an 
anticancer agent having activity against multidrug resistant KB-VI cancer cells, 
were both isolated from Zanthoxylum simulans [10]. 

Heterocyclic scaffolds, particularly nitrogen-containing heterocyclic com-
pounds, play an important role in the design of novel drugs because of their util-
ity for various biological receptors with a high degree of binding affinity. Among 
the heterocycles, the triazines with their numerous biological profile, occupy a 
prominent position [11]. The 1,2,4-triazine ring as one of the most ubiquitous 
heterocycles in Nature, and it has been reported to possess a broad spectrum of 
biological properties, including anticonvulsant [12], neuroprotective [13], anxi-
olytic [14], antiparkinson [15], antidepressant [16], anti-inflammatory [17], an-
timicrobial [18] activities. In addition, there are also many reports indicating 
significant anticancer properties for the 1,2,4-triazine fragment. For example, ti-
rapazamine (C, Figure 1) is currently in various clinical trial phases for the 
treatment of human non-small cell, cervical, ovarian, head and neck cancers. 
Tirapazamine works by inducing DNA damage in poorly oxygenated tumor cells 
[19]. With this background and on the basis of that the pyrano[3,2-c]quinolone 
moieties reveal broad spectrum of biological activities and exhibit cytotoxicity 
against cancer cells. In the present work, pyrano[3,2-c]quinolone containing 
1,2,4-triazine ring were evaluated as anticancer agents toward human cancer cell 
lines Ehrlich Ascites carcinoma cells (EAC), Liver cancer cell line Hep-G2 and 
Breast cancer cell line MCF-7. A molecular docking study was employed to in-
vestigate the binding and functional properties of Pyranoquinolines derivatives 
as topoisomerase IIβ (TOP2B) inhibitory activity.  
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Figure 1. Naturally occurring and bioactive pyrano[3,2-c]quinolone molecules 
(A - E): (A) huajiaosimuline, a selective anticancer agent (breast); (B) zanthosi- 
muline, an anticancer agent against multidrug resistant KB-VI cancer cells; (C) 
Structure of tirapazamine. 

2. Material and Methods 
2.1. Anticancer Activity for Liver Cancer Cell Line Hep-G2 and 

Breast Cancer Cell Line MCF-7 
2.1.1. Cell Cultures and Treatments 
Liver cancer cell line Hep-G2 and breast cancer cell line MCF-7 were obtained 
from the American type culture collection (Rockville, Mary land, USA). Cells 
were grown in RPMI-1640 medium supplemented with 10% fetal bovine serum, 
1% nonessential amino acid solution and 1% penicillin-streptomycin solution 
(10,000 U of penicillin and 10 mg of streptomycin in 0.9% NaCl) in a humidified 
atmosphere of 5% CO2 and 95% air at 35˚C. The cells were cultured in 25 cm2 
cell culture flasks. For experimental purposes, cells were cultured in 96-well 
plates (0.2 mL for cell solution/well). The optimum cell concentration as deter-
mined by the growth profile of the cell line was 10 × 105 cells/mL (cells were al-
lowed to attach for 24 h before treated with tested compounds). The stock solu-
tion was filtered with Minisart filters Merck (Darmstadt, Germany) (0.22 µm). 
Working two-fold serially diluted test material (µm) was prepared. Cells mono-
layers were washed with PBS (phosphate buffer saline pH = 7.2) and the addi-
tional serially diluted material was dispensed to the precultured plates for the 
determination of test material’s toxicity [20]. 

2.1.2. MTT Assay for Cytotoxicity 
MTT assay is a sensitive, quantitative and reliable colorimetric method that 
measures viability of cells. The assay is based on the ability of mitochondrial lac-
tate dehydrogenase enzymes (LDH) in living cells to convert the water soluble 
substrate 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) 
used as 5 mg/mL in a dark blue formazan which is water-insoluble. Dimethyl 
sulfoxide is added to dissolve the insoluble purple formazan product into a co-
lored solution. The absorbance of this colored solution can be quantified by 
measuring it using spectrophotometer at a wavelength usually between 500 and 
600 nm [21]. 

2.1.3. Method 
Test and standard materials were 2 fold serially diluted on precultuled cell lines 
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for 24 h treatment at 37˚C post decanting growth medium. Treated cell lines 
were microscopically examined for detecting morphological changes and de-
tached cells. Dead cells were washed out using phosphate buffer saline pH = 7.2 
± 0.2 (PBS-0.05% Tween). Cells were incubated in 96 wells plates (1 × 106 
cells/mL) for different times periods (24, 48 and 72 h). At the required time 
point 50 µL of supematant was aspirated, added to another well and mixed with 
50 µL of the substrate buffer containing MTT dye (provided in the Promega Kit). 
Plated were incubated for 3 - 4 hrs at 37˚C. developed intra-cytoplasmic MTT 
formazan crystals were dissolved using 0.05 mL dimethyl sulphoxide (DMSO) 
for 30 min on plate shaker optical densities were read using (Biotek 8000, USA) 
ELISA plate reader. 

2.1.4. Calculations 
IC50 of test compounds was determined using Master-plex-2010 program. Data 
were reported for three independent experiments [22]. Cell viability percentage 
was calculated as follows:   

Cell viability percentage = (OD of treated cells/OD of untreated cells) × 100 
[23]. 

2.2. Anticancer Activity for EAC Cells 

EAC cells were maintained by weekly intraperitoneal transplantation of 2.5 × 105 
cells in mice. The tumor is characterized by a moderately rapid growth, which 
leads to the death of the mice in about 20 days due to the distal metastasis. As-
cites was withdrawn under aseptic conditions from the peritoneal cavity of tu-
mor bearing mice by needle aspiration after 7 days of EAC cells inoculation. To 
adjust the number of EAC cells/mL, tumor cells obtained were diluted several 
times with normal saline. EAC viable cells were counted by trypan blue exclu-
sion method where 10 μl trypan blue (0.05%) was mixed with 10 μl of the cell 
suspension. Within 5 min, the mixture was spread onto haemocytometer, cov-
ered with a cover slip and then the cells were examined under microscope. Dead 
cells were stained blue, viable cells were not. Cell suspension was adjusted to 
contain 2.5 × 105 viable cells/ml. EAC cells, RPMI medium drugs, and DMSO 
were added in sterile test tubes according to trypan blue exclusion method [24]. 
The cells were incubated for two hours at 37˚C under a constant over lay of 5% 
CO2. EAC viable cells were counted by trypan blue exclusion using haemocyto-
meter as mentioned above. The cell surviving fraction was calculated from the 
relation T/C; where T and C represent the number of viable cells in a unit vo-
lume and the number of total (viable + dead) cells in the same unit volume, re-
spectively. The in vitro cytotoxicity was performed against two different human 
cancer cell lines namely: Liver Hep-G2 and Breast MCF-7. Comparison between 
new compounds is carried out to evaluate their toxicity against Liver Hep-G2 
and Breast MCF-7 cancer cell lines. Cell viability assessment using the MTT 
method indicated a significant difference between the synthesized compounds 
and reference drug, 5-flurouracil.  
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2.3. Docking Analysis  

The crystal structure of the Topoisomerase-II-DNA-inhibitor complex was ob-
tained from the protein data bank (PDB: 4G0V [25]). The ternary complex was 
then checked for any missing atoms/residues via the protein preparation module 
in MOE [26]. All solvent molecules and all hetero ligands were removed. Using 
the Protein Preparation Wizard [26] the Topoisomerase-II-DNA complex was 
fully prepared via creating bonds and adding hydrogens. Subsequently, partial 
charges were assigned on all atoms and protonation states were predicted for io-
nizable groups. The binding pocket was identified by the co-crystallized ligand 
and a grid box was produced in Glide using the Receptor Grid Generation mod-
ule [26] [27]. Ligands were prepared in Maestro [27] [28] via the LigPrep mod-
ule using the default settings. The dominant ionization states at pH range of 7.0 
± 2.0 were generated for ionizable functional groups. Next, ligands were docked 
into the binding site of the previously prepared protein-DNA complex using the 
Glide software [26] [27], where the extra-precision (XP) Algorithm [29] was used 
for conformational sampling. Afterwards, generated poses were scored via the 
Glide_XP scoring function which includes terms for van der Waals, hydrogen 
bond, electrostatic interactions, desolvation penalty and penalty for intra-ligand 
contact [29]. 

3. Results and Discussion  
3.1. Chemistry  

Pyrano[3, 2 c]quinoline analogues 2a-c and 4a-b were synthesized as described 
in the literature [30]. The nitro-derivative 1a-c were reduced with tin and concen-
trated hydrochloric acid at 130˚C to produce N-alkyl-3-aminopyrano [3,2-c] 
quinoline-2,5-diones 2a-c in 70% - 79% yield (Figure 2). The intermediate 3c was 
generated in situ by the condensation of 3-aminoquinolinones 2c with dime-
thylformamid-dimethylacetal (DMF-DMA). The structure of enamine 3c com-
prises variable electron-deficient centers and it is expected to be quite reactive 
towards nucleophilic reagents. The formation of triazinopyranoquino-linones 
4a-b takes place initially via Michael addition to the olefinic carbon of enamine 
3c followed by elimination of dimethylamine, then heterocyclized to give 4a-b in 
a good yield (70% - 90%).  

3.2. Docking Study  

A molecular modelling study was initiated in order to support the assumed 
mode of action for tested compounds 2a-c and optimize a reliable model for 
predicating novel effective antitumour hits. The design of the 3-amino pyrano-
quinolinone 2a-c compounds was based on the anticancer quinolone structure. 
Voreloxin, a quinolone compound, is an antineoplastic agent that reached the 
clinical trial. [31] Voreloxin was observed to work through intercalating DNA 
and poisoning topoisomerase II via forming a protein—DNA-inhibitor complex 
[31]. Similar to the standard intercalating agent doxorubicin, the resulting ternary 
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Figure 2. Synthetic of compounds 2a-c and 4a-b. 

 
complex will consequently cause DNA fragmentation and finally apoptosis [32] 
[33]. Based on structural similarities between our compounds and quinolones, it 
was just sensible to propose that the 3-amino pyranoquinolinone compounds 
exert their antitumor activity via binding to the topoisomerase-II-DNA complex 
through the intercalation mechanism. The 3-amino pyranoquinolinone 2a-c 
along with the reference intercalating agent doxorubicin were docked into the 
topoisomerase-II-DNA complex. The resultant docking scores of the test com-
pounds and reference ligands along with their ligand efficiency score are shown 
in Table 1. Interestingly, the three 3-amino pyranoquinolinone 2a-c were able to 
obtain energetically favorable binding modes (−8.3 - −7.5 kcal/mol). The best 
scorer 2c was nicely placed on top of the co-crystalized ligand, intercalating the 
double stranded DNA (Figure 3(A)). Several stacking and hydrogen bonding 
interactions appear to contribute to the 3-amino pyranoquinolinone intercala-
tion ability. The planar tricyclic system of these compounds seemed to give them 
a great capacity to slide in between the DNA bases and to make π-π interaction 
with the surrounding nitrogen bases, Figure 3(B). Additionally, the 3-amino 
pyranoquinolinone compounds were capable of forming two hydrogen bonds 
with the dT9 deoxyribose and phosphate groups through their amine and another 
electrostatic interaction with the topoisomerase Asn778 side chain through their 
aromatic hydrogen. Compound 2c has an extended alkyl side chain, compared 
to 2a and 2b, which appeared to be involved in arene-H interactions with the 
two dG13 aromatic centers. The butyl chain also appeared to be immersed into 
a side subpocket formed by the side chains of Asn520 and Glu522 and the back-
bone amide of Arg503, Gly504, Lys505 and Ile506. For these two reasons, the 
butyl chain seems to be the main responsible factor for 2c superiority over the 
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Table 1. Docking scores of n-l docked into the Topoisomerase-DNA complex. 

Compound No. Structure 
Glide_XP Score 

(kcal/mol) 
Ligand Efficiency* 

(kcal/mol) 

2a 

 

−7.46 −0.39 

2b 

 

−7.64 −0.38 

2c 

 

−8.27 −0.38 

Doxorubicin 

 

−10.07 −0.26 

*Ligand efficiency = Glide_XP Score/number of heavy atoms. 

 

 
Figure 3. (A) The predicted binding pose of 2c (orange sticks) aligned on the 
co-crystallized ligand (cyan sticks) of the topoisomerase-II-DNA crystal structure; (B) 
Docked poses of 2a (red sticks), 2b (blue sticks) and 2c (orange sticks) aligned on each 
other and shown to intercalate the DNA double strand (gray sticks) in an identical man-
ner. The picture was generated by MOE. [26] Hydrogen bonding is shown as yellow dot-
ted lines. 
 
other two compounds 2a-b. As it can be noticed in Figure 3(B), this alkyl group 
is pointed towards the side chains of Asn520 and Glu522; meaning that extend-
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ing the 2c aliphatic chain with a polar group may result in a new electrostatic 
interaction, with topoisomerase II that can significantly boost 3-amino pyrano-
quinolinone compounds 2a-c potency. Thus, there is room for improvement 
with regards to these compounds binding with topoisomerase-DNA complex 
through their aliphatic chain. Although our compounds scored higher binding 
energies than doxorubicin (Table 1), they were able to obtain a very good ligand 
efficiency score (≤−0.38 kcal/mol) in comparison to the reference ligand (−0.26 
kcal/mol). Ligand efficiency accounts for the binding energy scored by each 
atom, indicating that our compounds have better leads like characteristics than 
doxorubicin. Hence, the 3-amino pyranoquinolinone 2a-c can act as a good 
starting point for designing a new therapeutically useful anticancer agent.  

3.3 Anti-Cancer Activity 
3.3.1. In-Vitro Anticancer Activity Using Ehrlich Ascites Carcinoma Cells 

(EAC) Cell Line 
The cytotoxicity of five compounds 2a-c and 4a-b were examined on Ehrlich 
Ascites Carcinoma cells (EAC). The Antitumor efficacy of the compounds 
against EAC cell lines was demonstrated compared to doxorubicin. It is clear 
from the results in Table 2 and Figure 4, that the three 3-amino pyranoquino-
linone 2a-c showed significant activity (IC50 = 31.1, 29.2 and 27.7 μM) respec-
tively which is nearly as potent as the reference drug (doxorubicin, IC50 = 39.5 
μM). Compound 2c showed the higher activity among the 3-amino pyranoqui-
nolinone serieswith IC50 = 27.7 μM. The reason for the higher reactivity of the 
amines can be explained by the presence of the bioactive 3-aminopyrane and 
quinolinone moieties in one molecular frame, quinolinone is known with its ac-
tivity towards tumor cells. It has been reported that quinolones are known as 
potent antitumor agents because they target topoisomerase II enzyme and are 
considered as therapeutic promise [34]. It has been reported also that the activity 
of quinolinone depends on attack of topoisomerease IV (DNA gyrase) in micro-
bes and topoisomerease II in animals that in eukaryotes, DNA gyrase and topoi-
somerease IV is functionally replaced by two isoenzymes: topoisomerease IIa 
and IIb, a170 and b 180 kDa protein, respectively [35] [36]. Also interested are 
the 2-pyrones themselves, as some of the 2-pyrones with hydroxyl group at C4 
position were reported to be biologically active [37]. In our study, the presence 
of the aliphatic chain beside the amino group in 3-amino pyranoquinolinone 
2a-c is playing a vital role to improve the efficiency of the quinoline moiety as 
anti-tumor inhibitors, where it was found the presence of the butyl chain which 
seems to be the main responsible factor for 2c superiority over the other two 
compounds 2a-b and may give an idea about the possible importance of ex-
tended alkyl group in nitrogen N1 at quinolinone ring to enhance activity. Con-
siderable evidence indicated that as longer as the alkyl group at position N-1 
as higher as antitumor activity and increase affinity towards topoisomerease II 
[38]. 
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Table 2. Tumor cell growth inhibition expressed as inhibitory concentration IC50 (μM) in 
the presence of the synthesized compounds. 

Compound aIC50 (in μg/mL) 

2a 31.1 

2b 29.2 

2c 27.7 

4a 25.9 

4b 24.3 

Doxorubicin 39.5 

aIC50, compound concentration required to inhibit tumour cell proliferation by 50% (mean ± SD), n = 3. 

 

 
Figure 4. In-vitro anticancer activity of pyrano[3,2-c]quinolone compounds 2a-c and 
4a-b on Ehrlich Ascites Carcinoma cells (EAC) cell line expressed as inhibitory con-
centration IC50 (μM). 

 
Moreover, the most potent compound in this study was triazinopyranoquinoli-
none compound 4b (IC50 = 24.4 μM) which was found to be more potent than 
the reference drug (doxorubicin) (IC50 = 39.5 μM) and also they found to be 
more active than the starting material 2c (IC50 = 27.7 μM) this may be attributed 
to the presence of triazine ring which enhance the anti-cancer activity. 

3.3.2. In-vitro Anticancer Activity Using Liver Cancer Cell Line (Hep-G2) 
and Breast Cancer Cell Line MCF-7 

The pyrano[3,2-c]quinolone compounds 2a-c and 4a-b were evaluated for their 
in vitro antitumor effects using the standard 3-(4,5-dimethylthiazol-2-yl)-2, 
5-diphenyltetrazolium bromide (MTT) method against a panel of two human 
tumour cell lines: liver cancer cell line Hep-G2 and breast cancer cell line 
MCF-7. 5-fluorouracil (5-FU), which are one of the most effective anticancer 
agents, was used as a reference drug. Our results showed that some of the pyra-
no[3,2-c]quinolone compounds 2a-c and 4a-b exhibited a moderate to strong 
growth inhibition activity on the tested cell lines in comparison to the reference 
anticancer drugs. The relationship between surviving fraction and drug concen-
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tration was plotted to obtain the survival curve of the two cell lines. The re-
sponse parameter calculated was the IC50 value, which corresponds to the con-
centration required for 50% inhibition of cell viability. The key results obtained 
for compounds 2a-c and 4a-b toward liver cancer cell line (Hep-G2) and breast 
cancer cell line MCF-7 are shown in Table 3 and Figure 5. The percentage of 
viable cells was calculated as percent of cell viability by the following formula % 
cell viability = (Mean absorbance in test wells/Mean absorbance in control wells) 
100. The cell viability was observed following 24, 48 and 72 h of exposure to all 
compounds at doses of 0.5, 1, 2, 4, 8, 16, 32, 62.5, 125, 250, 500 and 1000 μM of 
compounds (see supporting data). The results revealed that compounds 2c with 
butyl group at N-1 position of the quinolone core with IC50 = 10.7 μM at 72 hr 
was found to be more potent than the reference drug (5-flurouracil) (IC50 = 11.2 
μM), On the other hand, compounds 4a-b with triazine moiety exhibited strong 
activity against HepG2 cell line with IC50: 8.3 and 6.7 μM at 72 hr respectively, 
which was found to be more potent than the reference drug 5-flurouracil (IC50 = 
11.2 μM). And 11.1 and 9.7 μM at 72 hr respectively against MCF-7 cell line 
compared with reference drug 5-flurouracil (IC50 = 11.6 μM). 
 
Table 3. Evaluation of IC50 of compounds 2a-c and 4a-b to liver cancer cell line (Hep-G2) 
and breast cancer cell line MCF-7 compared with reference drug, 5-flurouracil. 

Compound 

Hep-G2  
IC50 (µg/mL) 

MCF-7  
IC50 (µg/mL) 

IC50/24hr IC50/48hr IC50/72hr IC50/24hr IC50/48hr IC50/72hr 

2a 50.2 92.8 51.1 80.2 35.9 20.9 

2b 54.6 63.6 39.2 71.3 42.4 21.5 

2c 32.4 25.1 10.7 34.5 28.4 19.9 

4a 12.8 19.6 8.3 14.9 18.7 11.1 

4b 10.7 15.4 6.7 13.1 16.4 9.7 

5-flurouracil 11.5 19.5 11.2 12.1 21.6 11.6 

 

 
Figure 5. In-vitro anticancer activity of pyrano[3,2-c]quinolone compounds 2a-c and 
4a-b on liver cancer cell line (Hep-G2) and breast cancer cell line MCF-7 expressed as in-
hibitory concentration IC50 (μM) for 24 h, 48 h and 72 h. 

0
10
20
30
40
50
60
70
80
90

100

24hr 48hr 72hr 24hr 48hr 72hr

IC
50

(in
 μ

g/
m

L

Cell line

2a 2b 2c 4a

https://doi.org/10.4236/ojmc.2020.101001


A. M. Saeed et al. 
 

 
DOI: 10.4236/ojmc.2020.101001 11 Open Journal of Medicinal Chemistry 
 

4. Conclusion  

A series of the pyrano[3,2-c]quinolonine analogues were evaluated for its anti- 
cancer activity. The screening results revealed that compounds 4a-b were found 
as the most active candidates of the series against anticancer activity compared 
to the reference doxorubicin and 5-flurouracil against the three human tumour 
cell lines: Ehrlich Ascites Carcinoma cells (EAC), liver cancer cell line Hep-G2 
and breast cancer cell line MCF-7. A molecular docking study was employed to 
investigate their binding and functional properties as TOP2B inhibitors. Com-
pounds 2a-c showed a good binding mode with docking score values (−7.46, 
−7.64, −8.27 kcal∙mol−1) respectively compared with 5-flurouracil (−10.07 
kcal∙mol−1). Compound 2c has an extended alkyl side chain, compared to 2a and 
2b which may result in a new electrostatic interaction, with topoisomeraseII that 
can significantly enhance the 3-amino pyranoquinolinone compounds 2a-c po-
tency. The results suggested that presence of butyl group ring at N-position of 
the pyrano[3,2-c]quinolone structural motif seems to be an important position 
for anticancer activity. However, addition of triazine ring to compound 2c 
showed a significant alteration of the bioactive conformer of the parent scaffold 
and outcome with compounds 4a-b as the most potent candidates of the series. 
In summary, pyrano[3,2-c]quinolone compounds 4a-b have been confirmed as a 
useful lead compound which can be developed for the clinical trial for its thera-
peutic use. 
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