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Abstract 
A standard method is proposed to prove strictly that the Riemann Zeta func-
tion equation has no non-trivial zeros. The real part and imaginary part of the 
Riemann Zeta function equation are separated completely. Suppose  
( ) ( ) ( )1 2, , 0s a b i a bξ ξ ξ= + =  but ( ) ( ) ( )1 2, , 0s a b i a bζ ζ ζ= + ≠  with  

s a ib= +  at first. By comparing the real part and the imaginary part of Zeta 
function equation individually, a set of equation about a  and b  is ob-
tained. It is proved that this equation set only has the solutions of trivial ze-
ros. In order to obtain possible non-trivial zeros, the only way is to suppose 
that ( )1 , 0a bζ =  and ( )2 , 0a bζ = . However, by using the compassion me-

thod of infinite series, it is proved that ( )1 , 0a bζ ≠  and ( )2 , 0a bζ ≠ . So the 

Riemann Zeta function equation has no non-trivial zeros. The Riemann hy-
pothesis does not hold. 
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1. Introduction 

In the author’s previous paper titled “The inconsistency problem of Riemann 
Zeta function equation” [1], it was proved that after complex continuation was 
considered, on the real axis, the Riemann Zeta function equation had serious 
inconsistency. The Riemann hypothesis was meaningless [1].  

In the present discussions of Riemann hypothesis and the calculations of Zeta 
function’s zeros, approximate methods are commonly used. The real part and 
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imaginary part of Zeta function equation are mixed together so that problems 
become complicated. Because the Cauchy-Riemann Equation which an analyzed 
function should satisfy was violated, the obtained zeros are not the real ones of 
strict Zeta functions equation [1].  

In this paper, a standard method is proposed to separate the real part and the 
imaginary part of Zeta function equation completely. Then by comparing the 
real part and the imaginary part individually, it is proved strictly that on whole 
complex plane, the Zeta function equation has no non-trivial zeros. All trivial 
zeros are located on the real axis. The Riemann hypothesis is proved untenable 
again.  

The Riemann Zeta function has two forms. One is the form of series summa-
tion and another is the form of integral. The form of series summation is more 
fundamental with 

( ) ( )
1

, Re 1s

n
s n sζ

∞
−

=

= >∑                      (1) 

Her s a ib C= + ∈  is a complex number. Based on Equation (1), by using the 
Gama function ( )sΓ  and introducing the counter integral on the complex 
plane, Riemann obtained the integral form of Zeta function , as well as the alge-
braic relation of Zeta function, called as the Riemann Zeta function Equation [2] 
[3]. 

( ) ( ) ( ) ( )1 1

1 1
2 2 sin 2 1s ss

n n
n s s nπ π

∞ ∞
− − −−

= =

= Γ −∑ ∑               (2) 

According the definition of Equation (1), we also have 

( ) ( )1

1
1 s

n
s nζ

∞
− −

=

− = ∑                         (3) 

Substituting Equation (1) and Equation (3) in Equation (2), Equation (2) can 
be written as 

( ) ( ) ( ) ( ) ( ) ( )12 2 sin 2 1 1 , Re 1ss s s s sζ π π ζ−= Γ − − ≠          (4) 

According to the common understanding at present, on the right side of Equ-
ation (4), the definition domain of function is extended from ( )Re 1s >  to 
whole complex plane except the point ( )Re 1s = . So Equation (4) is considered 
as the new definition of Zeta function after complex continuation. However, by 
examining Riemann’s deduction carefully in his original paper proposed in 1859, 
we can see that Equation (4) is only a simplified symbol form. The original form 
of Equation (4) should be Equation (2) [1].  

In this original paper, Riemann introduced another form of Zeta function eq-
uation [4] 

( ) ( ) ( ) ( )21 1 2
2

ss s s s sξ π ζ−= − Γ                    (5) 

By using the formula ( ) ( )1x x xθ θ=  of Jacobi’s function, Riemann proved 
that the function (5) had the symmetry ( ) ( )1s sξ ξ= − . It was considered that 
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( )sζ  described by Equation (4) and ( )sξ  described by Equation (5) had the 
same non-trivial zeros, though they had different forms. In practical discussion, 
Equation (5) was used to calculate the zeros of Riemann hypothesis in general.  

Riemann guessed that all non-trivial zeros were located on the critical line 
( )Re 1 2s =  of complex plane, but had not provided any concrete zero. Over 

one hundred years, mathematicians had done a lot of research on the Riemann 
hypothesis, trying to prove or falsify it, but nothing worked. The Riemann hy-
pothesis becomes the world mathematics problem.  

However, there is a third possibility, i.e., there is something wrong with the 
Riemann Zeta function equation itself, so that the Riemann hypothesis can not 
be proved. It was proved in the author’s previous paper that there were four ba-
sic mistakes in the Riemann’s original paper in 1859, the Riemann Zeta function 
did not hold, the Riemann hypothesis becomes meaningless [1]. 

1) An integral item around the original point of coordinate system was neg-
lected in Riemann’s original paper. The item was convergent when ( )Re 1s > , 
but infinite when ( )Re 1s ≤ . That is to say, the integral form of Riemann Zeta 
function has not changed its divergence of series summation form. The Riemann 
Zeta function Equations (2) and (4) do not hold.  

2) The Riemann Zeta function equation has serious inconsistency. The so-called 
continuation of function indicates that a function which has no meaning in a 
certain domain is re-defined so that it becomes meaningful in this domain. But 
there is a basic requirement for the function’s continuation, i.e., this new defined 
function should have the same form with original function in the original do-
main. Otherwise, the extended function can not be regarded as the continuation 
of original function [5]. According to this basic principle, in the domain of 

( )Re 1s > , the left side of Equation (4) should be in the form of Equation (1).  
On the other hand, Equation (4) has definition on whole complex plane ex-

cept the point ( )Re 1s =  i.e., 1a ≠  but b can be arbitrary. Taking 3.5a =  
and 0b = , Equation (4) should be effective. Because the original form of Equa-
tion (4) is Equation (2), it means that Equation (2) should be effective on 

3.5a =  and 0b = . However, it is proved that the left side of Equation (2) is a 
limited value but the right side of Equation (2) is infinite when 3.5a =  and 

0b = , so the two sides of Riemann Zeta function equation are inconsistent [1]. 
In fact, it is proved that on the real axis, the Riemann Zeta function equation 

only holds at the point 1 2s a= = . However, at this point, the Zeta function is 
infinite, rather than zero. At the other points of real axis, if the left side of Equa-
tion (2) is convergent, the right side of Equation (2) is divergent, and vice versa. 
So the two sides of the Riemann Zeta function equation are incompatible.  

3) A summation formula was used in the deduction of the integral form of 
Riemann zeta function. The applicable condition of this formula is 0x > . At 
point 0x = , the formula becomes meaningless. However, the lower limit of 
Zeta function integral is 0x = , so this formula can not be used. The integral 
form of Riemann zeta function does not hold. 
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4) The formula ( ) ( )1x x xθ θ=  of Jacobi function was used to prove the 
symmetry of Zeta function. The applicable condition of this formula is 0x >  
[4]. But the lower limit of integral involved in the deduction is 0x = . Therefore, 
the formula can not be used too, the symmetry ( ) ( )1s sξ ξ= −  does not hold.  

The zeros calculation of Riemann Zeta function were discussed in the paper 
[1]. At present, it has been proved by manual and computer numerical methods 
that there are lot of zeros on the critical line of 1 2a = . The number has ex-
ceeded 10 trillion [6]. The paper pointed out that all methods used in the calcu-
lations were approximate ones. For example, Equation (5) was developed into 
the infinite series called as the Riemann-Siegal formula, then the zero of each 
polynomial formula was calculated. The result violated the symmetry of the 
Cauchy-Riemann formula that any analytic functions should satisfy, so they 
were not the true zeros of strict Zeta functions.  

In this paper, regardless of these problems mentioned above, we suppose that 
the Riemann Zeta function equation still holds and discuss the zero problem of 
Zeta function strictly. A simple and standard method is proposed to prove that 
the Riemann Zeta function equation has no non-trivial zeros on whole complex 
plane. 

Let 1 2iξ ξ ξ= +  and 1 2iζ ζ ζ= + , by separating each item of Equation (5) 
into real and imaginary parts, Equation (5) is written as the forms that real part 
and imaginary part are separated completely. Then we discuss the zeros of real 
part and imaginary part individually.  

At first, suppose that 1 0ξ =  and 2 0ξ = , but 1 0ζ ≠  and 2 0ζ ≠ , we obtain 
a set of equation about a  and b . It is proved that the only solution to this eq-
uation set is 1a =  and 0b = . But they are the trivial zeros located on the real 
axis, not non-trivial zeros. So Equation (5) has no non-trivial zeros. By the same 
method, it also is proved that Equation (4) only has no trivial zeros which are 
located at the points 2a n= −  ( 0,1,2,n = ) and 0b = .  

At last, in order to obtain possible non-trivial zeros, we take 1 0ζ =  and 

2 0ζ = , i.e., the summation form of Zeta function itself is equal to zero. Howev-
er, by using the compassion method of infinite series, it is proved that 1ζ  and 

2ζ  can not be zeros simultaneously.  
Therefore, we prove that the Riemann Zeta function equation has no non-trivial 

zeros again, the Riemann hypothesis does not hold. 

2. The Proof That the Zeta Function Equation (5) Has No  
Non-Trivial Zeros 

We discuss the zeros of Equation (5) in this section. Then discuss the zeros of 
Equation (4) in next section. 

Theorem 1. On the complex plane, if the real part and imaginary part of zeta 
function ( )sζ  are not equal to zeros, the Zeta function equation (5) has no 
non-trivial zeros. The trivial zero is located on the real axis at the point 1a =  
and 0b = .  
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Proof: We separate the real part and imaginary part of )(sξ  and ( )sζ , 
write them as  

( ) ( ) ( )1 2, ,s a b i a bξ ξ ξ= +                       (6) 

( ) ( ) ( )1 2, ,s a b i a bζ ζ ζ= +                      (7) 

Here 1ξ , 2ξ , 1ζ  and 2ζ  are real functions. By using formula lne tt = , we 
have 

( )

( ) ( )

( ) ( )

22 2 2

2 ln 22 ln 2

2

e e

cos ln 2 sin ln 2

a ibs a ib

ib i ba a

a b i b

ππ

π π π π

π π

π π π

− +− − −

− −− −

−

= =

= =

 = −       

            (8) 

( ) ( )( ) ( ) ( )21 1 1 2s s a ib a ib a a b i ab b− = + − + = − − + −            (9) 

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2

2 2

2 2

1 1
2

1 1 cos ln 2 2 sin ln 2
2

1 2 cos ln 2 1 sin ln 2
2

s

a

a

s s

a a b b ab b b

i ab b b a a b b

π

π π π

π π π

−

−

−

−

  = − − + −        

  + − − − −        

    (10) 

Let  

( ) ( ) ( ) ( )2 2
1

1 1 cos ln 2 2 sin ln 2
2

aG a a b b ab b bπ π π−   = − − + −          

( ) ( ) ( ) ( )2 2
2

1 2 cos ln 2 1 sin ln 2
2

aG ab b b a a b bπ π π−   = − − − −            (11) 

We get 

( )2
1 2

1 1
2

s s s G iGπ − − = +                     (12) 

Here 1G  and 2G  are real functions. On the other hand, the definition of 
real Gama function is [6]  

( ) 1

0

e d 0, 0t aa t t a
∞

− −Γ = > >∫                   (13) 

Let a s a ib→ = + , we obtain the complex continuation of Gama function. 
We have 

( ) ( )

( ) ( )( )
( ) ( )

ln 22 1 2 1 2 2 1

0 0 0

2 1

0

1 2

2 e d e d e e d

e cos ln 2 sin ln 2 d

, ,

i b tt s t a ib t a

t a

s t t t t t t t

t b t i b t t

a b i a b

∞ ∞ ∞
− − − − − −

∞
− −

Γ = = =

= +      

= Γ + Γ

∫ ∫ ∫

∫        (14) 

( ) ( )2 1
1

0

, e cos ln 2 dt aa b t b t t
∞

− −Γ =   ∫  
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( ) ( )2 1
2

0

, e sin ln 2 dt aa b t b t t
∞

− −Γ =   ∫                (15) 

1Γ  and 2Γ  are also real functions. Therefore, according to the equations 
above, Equation (5) can be written as  

( )( )( )
( ) ( )

( ) ( )

1 2 1 2 1 2 1 2

1 1 2 2 1 1 2 2 1 2

1 2 2 1 1 1 1 2 2 2

i G iG i i

G G G G

i G G G G

ξ ξ ζ ζ

ζ ζ

ζ ζ

+ = + Γ + Γ +

= Γ − Γ − Γ + Γ

+ Γ + Γ + Γ − Γ  

         (16) 

The real part and imaginary part of Equation (16) are separated with 

( ) ( )1 1 1 2 2 1 1 2 2 1 2G G G Gξ ζ ζ= Γ − Γ − Γ + Γ              (17) 

( ) ( )2 1 2 2 1 1 1 1 2 2 2G G G Gξ ζ ζ= Γ + Γ + Γ − Γ              (18) 

If the Zeta function equation has zeros, its real part and imaginary part should 
be equal to zero simultaneously. Let 1 0ξ =  and 2 0ξ = , we obtain 

( ) ( )1 1 2 2 1 1 2 2 1 2 0G G G Gζ ζΓ − Γ − Γ + Γ =              (19) 

( ) ( )1 2 2 1 1 1 1 2 2 2 0G G G Gζ ζΓ + Γ + Γ − Γ =              (20) 

If 1 0ζ ≠  and 2 0ζ ≠ , we can obtain from Equation (19) 

1 2 2 1
1 2

1 1 2 2

G G
G G

ζ ζΓ + Γ
=

Γ − Γ
                     (21) 

Substitute Equation (21) in Equation (20), we get 

( ) ( )
2

1 2 2 1
2 1 1 2 2 2

1 1 2 2

0
G G

G G
G G

ζ ζ
Γ + Γ

+ Γ − Γ =
Γ − Γ

             (22) 

or 

( ) ( )2 2
1 2 2 1 1 1 2 2 0G G G GΓ + Γ + Γ − Γ =                (23) 

Because it is the square summation of two items, each one in Equation (23) 
should be zero simultaneously 

1 2 2 1 0G GΓ + Γ =                        (24) 

1 1 2 2 0G GΓ − Γ =                        (25) 

From Equation (25), we have 1 2 2 1G GΓ = Γ . Substitute it in Equation (24), 
we get 2 2

1 2 0G G+ = . Because 2
1G  and 2

2G  can not be negative, we can only 
have 1 0G =  and 2 0G = . According to Equation (11), the results are 

( ) ( ) ( ) ( )21 cos ln 2 2 sin ln 2 0a a b b ab b bπ π − − + − =               (26) 

( ) ( ) ( ) ( )21 sin ln 2 2 cos ln 2 0a a b b ab b bπ π − − − + − =              (27) 

To square them and add them together, we get  

( ) ( )
2 221 2 0a a b ab b − − + − =                    (28) 

Equation (28) indicates ( ) 21 0a a b− − =  and 2 0ab b− = . Due to that a  
and b  are real numbers, the solutions of these two formulas are 0,1a =  and 

0b = . Obviously, they are trivial zeros located on the real axis. In fact, because 
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of 2 0sπ − ≠  this solution is the result of ( )1 0s s − =  in Equation (9). Let its 
real part and imaginary part be equal to zeros simultaneously, we have  
( ) 21 0a a b− − =  and 2 0ab b− = . Obviously, the value 1 2a =  of Riemann’s 

hypothesis is not the solution of Equation (28).  
The result above has nothing to do with the ( )sΓ  function. We should con-

sider the zeros of ( )sΓ  function. It is obvious that when 0b ≠ , ( )1 ,a bΓ  and 
( )2 ,a bΓ  described by Equation (15) are not equal to each other. So they can not be 

equal to zeros simultaneously (if they have zeros). Similar to the real ( )aΓ  func-
tion, it indicates that the ( )sΓ  function of complex continuation has no zeros too. 

As we known that when 0b =  and 2 0a >  or 0a > , ( )2aΓ  is limited 
but not equal to zero. When 2 0, 1, 2,a = − −  , or 0, 2, 4,a = − −  , ( )2aΓ  is 
infinite [5]. Therefore, after ( )2sΓ  function is considered, the zero 0a =  in 
Equation (28) is canceled. The trivial zero of Zeta function Equation (5) is lo-
cated at 1a =  and 0b = . Thus, the proof of Theorem 1 is finished. 

Besides, if we want to look for the non-trivial zeros of ( )sξ , the last way is to 
let 1 0ζ =  and 2 0ζ =  in which the non-trivial zeros may be contained. In 
this case, the problem whether or not the series summation form of Zeta 
function can be equal to zero is involved. We will discuss this problem in Sec-
tion 4.  

3. The Proof That the Zeta Function Equation (4) Has No  
Non-Trivial Zeros 

Theorem 2. On the complex plane, if the real part and imaginary part of Zeta 
function ( )1 sζ −  are not equal to zeros, the Zeta function equation Equation 
(4) has no non-trivial zeros. The trivial zeros are located on the real axis at the 
points 2a n= −  ( 0,1,2,n = ) and 0b = .  

Proof: Let ( ) ( )s sζ ζ ′→  and write Equation (4) as 

( ) ( ) ( ) ( ) ( )12 2 sin 2 1 1ss s s sζ π π ζ−′ = Γ − −               (29) 

According to current understanding, ( )sζ ′  is considered as the new defini-
tion of Zeta function after complex continuation was carried out. But ( )1 sζ −  
still has the same form of Equation (1), because Equation (3) was used in the last 
steep of Riemann’s deduction. By using the formula 2e ii π= , we have 

( ) ( ) ( )

( ) ( )

2 2 2
2 2

1 2 1 22 2

e e esin 2 e e
2 2

1 e e e e
2

is is i
i a ib i a ib

i a i ab b

s
i

π π π
π π

π ππ π

π
− −

+ − +

− − +−

−  = = − 

 = − 

        (30) 

( ) ( ) ( ) ( ) ( )1 1 1 1 ln 22 2 2 2 2 2 2 2 2 es a ib a ib a ib ππ π π π π− − + − −= = =         (31) 

( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1

1 1 2 1 2ln 2 2 2

1 1 2 ln 2 1 2 ln 22 2

2 2 sin 2

2 e e e e e

2 e e e e

s

a i a i aib b b

a i a b i a bb b

s
π ππ π π

π π π ππ π

π π

π

π

−

− − − +−

− − + − + −   −    

 = − 
 = − 

         (32) 

Let  
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( ) ( )1 2 ln2 , 1 2 ln2A a b B a bπ π π π= − + = + −           (33) 

Equation (32) can be written as 

( ) ( )
( ) ( )

1
1 2

1 2 2 2 2

2 2 sin 2

2 e cos e cos e sin e sin

s

a b b b b

s G iG

A B i A Bπ π π π

π π

π

−

− − −

= +

 = − + + 
    (34) 

( ) ( )1 2 /2
1 2 e cos e cosa b bG A Bπ ππ − −= −  

( ) ( )1 2 2
2 2 e sin e sina b bG A Bπ ππ − −= +                (35) 

Here A, B, 1G  and 2G  are real functions. We also have [6] 

( )

( ) ( )( )

( ) ( )

1 1 ln

0 0 0

1

0

1 2

1 e d e d e e d

e cos ln sin ln d

, ,

t s t a ib t a ib t

t a

s t t t t t t t

t b t i b t t

a b i a b

∞ ∞ ∞
− − − − − − − − −

∞
− −

Γ − = = =

= −

= Γ + Γ

∫ ∫ ∫

∫          (36) 

( ) ( ) ( ) ( )1 2
0 0

, e cos ln d , , e sin ln dt a t aa b t b t t a b t b t t
∞ ∞

− − − −Γ = Γ = −∫ ∫      (37) 

Here 1Γ  and 2Γ  are also real functions. Thus, Equation (4) can be written 
as 

( )( )( )
( ) ( )

( ) ( )

1 2 1 2 1 2 1 2

1 1 2 2 1 1 2 2 1 2

1 2 2 1 1 1 1 2 2 2

i G iG i i

G G G G

i G G G G

ζ ζ ζ ζ ζ

ζ ζ

ζ ζ

′ ′ ′= + = + Γ + Γ +

= Γ − Γ − Γ + Γ

+ Γ + Γ + Γ − Γ  

           (38) 

By separating real part and imaginary part, we get 

( ) ( )1 1 1 2 2 1 1 2 2 1 2G G G Gζ ζ ζ′ = Γ − Γ − Γ + Γ              (39) 

( ) ( )2 1 2 2 1 1 1 1 2 2 2G G G Gζ ζ ζ′ = Γ + Γ + Γ − Γ              (40) 

If the Zeta function equation has zeros, its real part and imaginary part should 
be zeros simultaneously. Suppose that 1 0ζ ≠  and 2 0ζ ≠ , according to the 
same method as shown in Section 2, we get 

1 2 2 1 0G GΓ + Γ =                         (41) 

1 1 2 2 0G GΓ − Γ =                         (42) 

Form Equation (42), we have 1 2 2 1G GΓ = Γ . Substituting it in Equation (41), 
we get 2 2

1 2 0G G+ = . The only solutions are 1 0G =  and 2 0G = . According to 
Equation (35), we obtain 

2 2e cos e cos 0b bA Bπ π− − =                   (43) 
2 2e sin e sin 0b bA Bπ π− + =                    (44) 

To square Equation (43) and Equation (44), then add them together, we get 

( )e e 2cosb b A Bπ π− + = +                    (45) 

To square Equation (43) and Equation (44) and subtract them, we get 
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( )e cos2 e cos2 2cosb bA B A Bπ π− + = −                (46) 

Substituting Equation (33) in Equation (45) and Equation (46), we obtain 

( )e e 2cosb b aπ π π− + =                       (47) 

( ) ( ) ( )e cos 2 ln2 e cos 2 ln2 2cos 2 ln2b ba b a b bπ ππ π π π π−− + − − = −    (48) 

If 0b ≠ , by developing e bπ−  and ebπ  into the series, we can prove  
e e 2b bπ π− + > . However, because of ( )2cos 2aπ ≤ , Equation (47) does not hold. 
So the only solution of Equation (47) is 0b =  and ( )2 0,1,2,a n n= ± =   
representing the trivial zeros located on the real axis. In this case, Equations (47) 
and (48) become the same with the same solution. 

If taking 1 2a = , we have ( )2cos 2 0π = . Because of e e 0b bπ π− + ≠ , Equa-
tion (47) can not hold too. Therefore, 1 2a =  is not the solution of Equation 
(4) too. In fact, because of is2 0π ≠ , the solutions 0b =  and 2a n= ±  are the 
result of ( )sin 2 0sπ =  in Equation (29), having nothing to do with Γ  func-
tion too. 

But if let 0b =  and 1a a′− = −  in Equation (37), we have 1a a′ = − . When 
0a′ ≤  or 1a ≥ , we have 1Γ →∞ . Therefore, the corresponding zeros  
2, 4,6,a =   in (47) can be removed. The trivial zeros of Equation (4) only ap-

pear at the points 2a n= −  ( 0,1,2,n = ) and 0b = . Thus, the proof of Theo-
rem 2 is finished. 

So, looking for possible non-trivial zeros of Equation (4), the only way for us 
is to consider ( )1 , 0a bζ =  and ( )2 , 0a bζ = . The problem is involved whether 
or not the series summation form of Zeta function can be equal to zero. Ac-
cording to Equation (1), we have  

( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )( )

1 2

1 1 1

1 ln 2 1 ln 3 1 ln

1 1 1

1 1 1

1 , ,
1 1 11

2 3
1 2 e 3 e e
1 2 cos ln 2 3 cos ln 3 cos ln

2 sin ln 2 3 sin ln 3 sin ln

s s s

a ib a ib a ib n

a a a

a a a

s a b i a b

n
n

b b n b n

i b b n b n

ζ ζ ζ

− − −

− − −

− − −

− − −

− = +

= + + + ⋅⋅⋅ + + ⋅⋅ ⋅

= + + + ⋅⋅⋅ + +

= + + + + +

+ + + + +



 

 

 (49) 

So we obtain 

( ) ( ) ( ) ( )1 1 1
1 , 1 2 cos ln2 3 cos ln3 cos lna a aa b b b n b nζ − − −= + + + + +     (50) 

( ) ( ) ( ) ( )1 1 1
2 , 2 sin ln 2 3 sin ln 3 sin lna a aa b b b n b nζ − − −= + + + +      (51) 

We discuss the zeros of Equations (50) and (51) in next section. 

4. The Proof That the Series Summation Formula of  
Riemann Zeta Function Has No Zeros  

4.1. The Convergence of Summation Form of Zeta Function  

In order to discuss the zeros of the summation form of Zeta function, we should 
discuss its convergence. If s a=  is a real number, Equation (1) is divergent 
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when 1a <  without zeros. When 1a > , the series is convergent and great than 
zero, so (1) has no zeros. The proof is as below [7]. 

Suppose 1a > , p is prime number, by considering the Euler prime number 
product formula  

( ) ( )1 1
1 1 exp ln 1a a a

p p p
a p p pζ

− −− − − 
= − ≥ + = − + 

 
∏ ∏ ∑        (52) 

For any 0x > , we have ( )ln 1 x x+ < . Because ap− < ∞∑  is convergent, 
we have 

( ) exp 0a

p
a pζ − 

≥ − > 
 
∑                       (53) 

If s a ib= +  is a complex number, the situation is more complicated. It does 
not seems to have strict proof to conform ( ) 0sζ ≠  at present. Let’s discuss 
this problem below. According to the judgment formula of series convergence of 
complex function showing in Equation (1), we have 

( )
1 1lim lim lim 1

1 1/1

a iba ib
n

a ibn n n
n

u n
u nn

++
+

+→∞ →∞ →∞

 = = = + +
            (54) 

Because the radius of convergence is 1, we can not judge the convergence of 
Equation (1). By using the Euler formula, we write Equation (1) as  

( )

( ) ( ) ( )
( ) ( ) ( )( )

1 1 11
2 3

1 2 cos ln2 3 cos ln3 cos ln

2 sin ln2 3 sin ln3 sin ln

a ib a ib a ib

a a a

a a a

s
n

b b n b n

i b b n b n

ζ + + +

− − −

− − −

= + + + + +

= + + + + +

− + + + +

 

 

 

    (55) 

By separating the real part and imaginary part, let ( )s u ivζ = + , we get 

( ) ( ) ( ) ( ), 1 2 cos ln2 3 cos ln3 cos lna a au a b b b n b n− − ⋅ −= + + + + +     (56) 

( ) ( ) ( ) ( )( ), 2 sin ln 2 3 sin ln3 sin lna a av a b b b n b n− − −= − + + + +      (57) 

By using the formula ( ) ( )ln 1 ln ln 1 1n n n+ = + +  and considering the con-
vergences of Equations (56) and (57), we have: 

( )( )
( ) ( )

( )( )
( ) ( )
( )
( )

1
cos ln 1

lim lim
1 cos ln

cos ln ln 1 1
lim

1 1 cos ln

cos ln
lim 1

cos ln

a
n

an n
n

an

n

n b nu
u n b n

b n b n

n b n

b n
b n

+

→∞ →∞

→∞

→∞

+
=

+

+ +
=

+

= =

                (58) 

( )( )
( ) ( )

( )
( )

1
sin ln 1 sin ln

lim lim lim 1
sin ln1 sin ln

a
n

an n n
n

n b n b nv
v b nn b n
+

→∞ →∞ →∞

+
= = =

+
           (59) 

The radius of convergence is still equal to 1. The convergences of Equation 
(56) and Equation (57) can not be determined. Because the formulas contain 
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Trigonometric functions, the items in the formula can be positive or negative, 
we can not ensure that the result of summation is always great than zero. This is 
different from the situation when s is a real number.  

4.2. The Zeros of Common Analytic Functions 

In the theory of complex functions, the analytic nature of functions is very im-
portant. Many theorems cannot be used for non-analytic function. For example, 
the residue theorem is effective only for analytic functions. On the other hand, a 
complex function can always be written as  

( ) ( ) ( ), ,f z u x y iv x y= +                        (60) 

Here z x iy= + . If ( )f z  is analytic one, its real part and imaginary part are 
related. The Cauchy-Riemann formula should be satisfied with [6] 

,u v u v
x y y x
∂ ∂ ∂ ∂

= = −
∂ ∂ ∂ ∂

                        (61) 

In the current calculation of the zero point of Riemann Zeta function, some 
approximate methods are adopted. Because Equation (61) is ignored, what ob-
tained are not real zeros of Zeta function [1].  

It should be emphasized that when we calculate the zero points of analytic 
functions, we need to separate the real part and the imaginary part. Because it's 
possible to have a situation where the real part or the imaginary part is equal to 
zero, but they are not equal to zero simultaneously. However, in the current zero 
calculation of Riemann hypothesis, the real part and imaginary part are often 
mixed together, making the problem ambiguous. 

4.3. The Proof That the Series Summation Formula of Riemann  
Zeta Function Has No Zeros on the Complex Plane 

Theorem 3. The series summation formula of Riemann Zeta function has no 
zeros on whole complex plane.  

Proof: By using the formula lnea a nn = , we write Equations (50) and (51) as  

( ) ( ) ( ) ( ) ( ) ( )1 ln 2 1 ln 3
1 , , 1 e cos ln2 e cos ln3a aa b u a b b bζ − −= = + + +      (62) 

( ) ( ) ( ) ( ) ( ) ( )1 ln 2 1 ln 3
2 , , e sin ln 2 e sin ln 3a aa b v a b b bζ − −= = + +      (63) 

It is easy to prove that Equations (62) and (63) satisfy Equation (61). So the 
summation form of Zeta function is an analytic one. We prove below that Equa-
tions (62) and (63) can not be equal to zero simultaneously.  

Let’s discuss the simplest situation to take the first two items in ( )1 0sζ − =  
as shown in Equation (49). According to Equations (62) and (63), we have 

( ) ( )1 ln 21 e cos ln2 0a b−+ =                        (64) 

( ) ( )1e sin ln2 0a b− =                          (65) 

Suppose that a  is a limited number, the solution of Equation (65) is  
ln2b nπ= . If n is an even number, we have cos 1nπ = . Substituting it in Equa-
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tion (64), we get 
( )1 ln 21 e 0a−+ =  or ( ) ( )1 ln2 ln 1a − = −                (66) 

Because a  is a real number, ( )ln 1 lnei iπ π− = =  is not a real number, so 
Equation (64) has no solution of real number. When n is an odd number, we 
have cos 1nπ = − . Substituting it in Equation (64), we get  

( )1 ln 21 e 0a−− =  or ( )1 ln2 ln1 0a − = =                (67) 

Therefore, the solutions of Equations (64) and (65) are 1a =  and  
( )2 1 ln 2b n π= +  ( 0,1,2,n = ). If 1a ≠ , Equations (64) and (65) can not be 

equal to zeros simultaneously.  
Then, let’s discuss the first three items of Equation (49). By considering 

lnea a nn =  and lneib ib nn = , multiplying the first three items with  
( ) ( ) ( )( ) ( )11 1 ln 2 32 3 2 3 eas s ib−− − − ⋅= ⋅ , and let it equal to zero, we get 

( )( ) ( ) ( ) ( )1 ln 2 3 1 1ln 2 ln 32 3 e 2 e 3 e 0a ib a aib ib− − ⋅ − −− −⋅ + + =              (68) 

By considering the Euler’s formula and separating real part and imaginary 
part, we obtain  

( )( ) ( )( ) ( ) ( ) ( ) ( )1 1 12 3 cos ln 2 3 2 cos ln 2 3 cos ln 3 0a a ab b b− − −⋅ ⋅ + + =      (69) 

( )( ) ( )( ) ( ) ( ) ( ) ( )1 1 12 3 sin ln 2 3 2 sin ln 2 3 sin ln 3 0a a ab b b− − −⋅ ⋅ + + =      (70) 

We write Equation (70) as  

( )( ) ( ) ( ) ( )1 1 12 3 cos ln 2 3 2 cos ln 2 3 cos ln 3 0
2 2 2

a a ab b bπ π π− − −     ⋅ − ⋅ + − + − =     
     

 (71) 

It can be seen that Equations (69) and (71) are completely symmetric with the 
same parameters before cosine function. Because a  and b are arbitrary, in or-
der to make Equations (69) and (71) tenable for arbitrary a  and b, the only 
way is to let 

( ) ( )ln 2 3 ln 2 3 , ln 2 ln2, ln3 ln3
2 2 2

b b b b b bπ π π
⋅ = − ⋅ = − = −        (72) 

or     

( )
, ,

4ln 2 3 4ln2 4ln3
b b bπ π π
= = =

⋅
                   (73) 

However, these three relations are contradictory. So Equations (69) and (70) 
can not be equal to zero simultaneously.  

Off cause, to the series of which item’s number is limited, the proof above is 
not strict. But for the series with infinite items, this method is standard one. Let  

( ) 1 1 1

1 1 11 1 0
2 3s s s

n

s
p

ζ − − −− = + + + + + =              (74) 

by multiplying two sides of Equation (74) with  
( )( ) ( )( ) ( )2 3 11 1 ln

2 3 12 3 e n ns a ib p p p p
n n np p p p p −− − −

−⋅ ⋅ ⋅ ⋅ 

 , we get 
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( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )

2 3 1 2 3 2

2 3 1 2 3 1

1 1ln ln
2 3 1 2 3 2

1 1ln ln
3 1 2 3 1

e e

e e 0

n n n

n n n

a aib p p p ib p p p p
n n n

a aib p p p ib p p p p
n n n n

p p p p p p p

p p p p p p p

− −

− −

− −− −
− −

− −− −
− −

+ + ⋅ ⋅ ⋅

+ + =

 

 

 

 

 (75) 

For infinite series, we have np →∞ . By dividing real part and imaginary 
part, similar to Equations (69) and (71), we obtain 

( )( ) ( )( )
( )( ) ( )( )

( )( ) ( )( )
( )( ) ( )( )

1
2 3 1 2 3 1

1
2 3 2 2 3 2

1
3 1 3 1

1
2 3 1 2 3 1

cos ln

cos ln

cos ln

cos ln 0

a
n n

a
n n n n

a
n n n n

a
n n n n

p p p b p p p

p p p p b p p p p

p p p b p p p

p p p p b p p p p

−
− −

−
− −

−
− −

−
− −

+ ⋅ ⋅ ⋅

+ + ⋅ ⋅ ⋅

+ ⋅ ⋅ ⋅ =

 



 



         (76) 

( )( ) ( )

( )( ) ( )

( )( ) ( )

( )( ) ( )

1
2 3 1 2 3 1

1
2 3 2 2 3 2

1
3 1 3 1

1
2 3 1 2 3 1

cos ln
2

cos ln
2

cos ln
2

cos ln 0
2

a
n n

a
n n n n

a
n n n n

a
n n n n

p p p b p p p

p p p p b p p p p

p p p b p p p

p p p p b p p p p

π

π

π

π

−
− −

−
− −

−
− −

−
− −

 − 
 

 + − 
 
 + + − 
 

 + − = 
 

 

 

  

 

       (77) 

According to the theory of infinite series, when the number of items tends to in-
finite, to make Equations (76) and (77) be tenable simultaneously, besides a →∞ , 
the only way is to let the corresponding terms are equal to each other, we have 

( ) ( )2 3 1 2 3 2

,
4ln 4lnn n n

b b
p p p p p p p
π π

− −

= =
 

 

( ) ( )3 1 2 3 1

,
4ln 4lnn n n n

b b
p p p p p p p
π π

− −

= =
 

           (78) 

And so on. However, Equation (78) are impossible, so Equations (76) and (77) 
can not be equal to zeros simultaneously. The summation form of Zeta function 
( )1 sζ −  can not be zero, and so do for ( )sζ ′  to let 1s s′ → − . Then the 

proof of Theorem 3 is finished.  
The result above has nothing to do with the value of a, as long as a < ∞ , no 

matter 1a >  or 1a ≤ . If take 0b = , i.e., on the real axis, Equation (51) be-
comes zero but Equation (50)is not equal to zero. We have  

( ) ( ) 1 1 1
11 1 1 2 3 0a a aa a nζ ζ − − −− = − = + + + + + ≠          (79) 

If taking 1 2a = , we have 1 1 2a− = . It is proved in [1] that only in this 
case, the two sides of Equation (2) can be equal to each other. But the result is 
infinite, rather than zero, so it is meaningless. 

( ) 1 1 11 2 1
2 3 n

ζ = + + + + + →∞               (80) 

According to the discussion above, the Zeta function equations Equation (4) 
and Equation (5) has no non-trivial zeros.  
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Up to now, we have fully explained the problem of Riemann hypothesis, and 
obtained the following Theorem 4.  

Theorem 4: The Riemann Zeta function Equations (4) and (5) have no 
non-trivial zeros on whole complex plane. The Riemann hypothesis does not 
hold.  

5. Conclusions 

The Riemann Zeta function equation has two forms. They are considered with 
the same non-trivial zeros. The Riemann hypothesis claims that all non-trivial 
zeros were located on the critical line ( )Re 1 2s =  of complex plane, but it can 
not be proved up to now.  

In the author previous paper “The inconsistency problem of Riemann Zeta 
function equation”, it was revealed that there were four basic mistakes in the 
Riemann’s original paper proposed in 1895. The Riemann Zeta function equa-
tion did not hold and the Riemann hypothesis was meaningless.  

In this paper, we suppose that the Riemann Zeta function equations still hold. 
By separating the Zeta function equation into real part and imaginary part com-
pletely, it is proved that the Riemann Zeta function equations have no non-trivial 
zeros. The summation form of Zeta function itself also has no zeros. The Rie-
mann hypothesis is proved untenable again from another angle. 
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