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Abstract 
This paper presents a new scheme of flaw searching in surface modeling 
based on Euler Characteristic. This scheme can be applied to surface con-
struction or reconstruction in computer. It is referred to as Euler Accompa-
nying Test (EAT) algorithm in this paper. Two propositions in algebraic to-
pology are presented, which are the foundation of the EAT algorithm. As the 
modeling is the first step for rendering in the animation and visualization, or 
computer-aided design (CAD) in related applications, the flaws can bring some 
serious problems in the final image or product, such as an artificial sense in 
animation rendering or a mistaken product in industry. To verify the EAT 
progressive procedure, a three-dimensional (3D) stamp model is constructed. 
The modeling process is accompanied by the EAT procedure. The EAT scheme 
is verified as the flaws in the stamp model are found and modified. 
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1. Introduction 

Along with the development of surface construction and reconstruction, many 
researchers have realized that mesh models may be constructed initially with 
some flaws because of the complex geometrical and topological structures of 
surfaces, and the limitations of scanning technologies and modeling schemes 
[1]-[10]. They have put a lot of efforts into repairing the flaws and filling holes. 
Although tens of researchers have been paying quite much attention to the hole 
filling quite a while [1]-[8], only several researchers [9] [10] focusing on the hole 
detecting are known, which cannot provide a method to find all the flaws in a 

How to cite this paper: Liu, Y.K., Yue, Y., 
Zhang, D.W. and Li, C.H. (2020) Euler 
Characteristic Scheme of Globally Search-
ing for Flaws in Surface Modeling. Ad-
vances in Pure Mathematics, 10, 57-85. 
https://doi.org/10.4236/apm.2020.102005 
 
Received: January 8, 2020 
Accepted: February 25, 2020 
Published: February 28, 2020 
 
Copyright © 2020 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/apm
https://doi.org/10.4236/apm.2020.102005
http://www.scirp.org
https://www.scirp.org/
https://doi.org/10.4236/apm.2020.102005
http://creativecommons.org/licenses/by/4.0/


Y. K. Liu et al. 
 

 
DOI: 10.4236/apm.2020.102005 58 Advances in Pure Mathematics 
 

model. 
Since modeling is the first step for rendering in the animation and visualiza-

tion [11]-[16], or design and even manufacturing in industry [17]-[25], flaws 
produced in modeling can bring some serious problems in the final image or 
product. For example, a character in an animation has a tiny gap in his or her 
armpit under right arm, which should be fitted together. This gap is often invisi-
ble. It can, however, be seen when the character raises the right arm. 

Another example is a case in fashion design, in which two adjoining cloth 
patches are not defined to fit together mistakenly. This problem may result in 
the problem that the edges between the two adjoining patches will not be 
stitched together in the following process. 

The third example is that during interacting with computer, a viewer is inter-
ested in a mesh model and tries to take a close look at some parts of the model 
where there is a minute hole. The hole may be invisible when it is occluded or at 
a low resolution, but it may be seen when it is zoomed in and turned to be illu-
minated. The third example will be displayed in Section 4 of this paper. 

For the above reasons, this paper presents a new scheme to globally search a 
mesh model for and locate the flaws. This new scheme is based on Euler 
characteristic, and named Euler Accompanying Test (shortened as EAT).  

To give the theory foundation of algebraic topology, two propositions are 
presented for the EAT scheme in this paper. They can bridge the gap between 
the surface construction in computer and the theory of algebraic topology. 

With the trivial amount of computing, the EAT scheme can assist in repairing 
and generating a topologically-correct model that has the same algebraic topo-
logical structure as that of its fitting target surface. 

In this research, we also construct a new model of 3D PAMA stamp shown in 
Figure 1 to display the progressive procedure of EAT scheme. The stamp model 
is programmed with OpenGL and VC++. There are two reasons for using a new 
model rather than the popular 3D models of Stanford Bunny, Skeleton Hand 
and Happy Buddha [26]. 

The first reason is that it is more efficient and tractable to search for, locate 
and correct a flaw during modeling than post-processing after the whole mesh 
model has been constructed. It is also why the new scheme is named Euler  
 

 
Figure 1. Two images of the model of the PAMA stamp: (a) The wire-frame image; (b) 
The fill-area image. 
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Accompanying Test (EAT), which means the modeling process accompanied by 
flaw-locating with the EAT. We will detail it in Section 3. The second reason is 
that this stamp mesh model consists of not only triangle facets but also polygons 
with more than three edges. The popular 3D models of Stanford Bunny, Skele-
ton Hand, and Happy Buddha [26] are composed of only triangle facets. We will 
apply these popular models gradually to the testing cases in the future. 

The rest of this paper is arranged as follows: Section 2 introduces related stu-
dies; Section 3 details the EAT algorithm and the related propositions; Section 4 
presents the searching cases of EAT on the PAMA stamp model; Section 5 is for 
the final conclusions. 

2. Related Studies 

In studies of surface construction and reconstruction in animation [13], visuali-
zation [11] [12] [14] [15] [16], and CAD [19], many modeling schemes are 
created to construct a composite surface with a mesh model to be approximate 
to a targeted object surface, which is referred to as a target surface in the rest 
part of this paper. The input of the construction process is usually a set of points 
sampled on the target surface or generated with reference to the target surface. 

Among the studies, [14] presented the results of an approach for surface re-
construction from arbitrarily large point clouds of robotic maps. The authors in 
[15] proposed an approach to improve existing techniques of polynomial surface 
models. The research of [16] focused on the design of a modeling platform for a 
heterogeneous object (HEO) part based on a material distribution control func-
tion and hierarchical contour loop. These studies can give a clue to the broad 
applications of surface construction and reconstruction. 

The composite surfaces are usually polygon patches glued together [21]-[25] 
[27]-[35]. Triangles and quads are mostly used as patches.  

The work of [21] introduced an array-based algorithm for adaptive mesh re-
finement, which could generate millions of triangles. Their research of [22] 
proposed a local optimization method to construct triangular surface patches of 
high accuracy. In [24] and [25], methods of modeling surfaces composed of po-
lygons were discussed. In [27], the authors presented a method that took an un-
organized set of points to produce a surface of triangular facets. The study of 
[28] was the optimization of an initial triangular mesh. The research of [29] fo-
cused on automatic reconstruction of piecewise smooth surface models of tri-
angular patches. In [30], the authors presented a method for combining a collec-
tion of range images into a single triangular mesh. The paper of [31] described a 
recursive bicubic B-spline patch subdivision algorithm which could generate 
rectangular control-point meshes. On the foundation of the study [31], the au-
thors of [32] focused on the behavior of recursive division surfaces near extraor-
dinary points. In [34], the authors proposed a method for refinement on B-pline 
surfaces with hierarchical subdivisions. The research of [35] developed the 
works of [31] and [32] to non-uniform recursive subdivision surfaces. It can be 
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summarized that triangular patches were used by [27] [28] [29] [30] and quad 
facets were applied to subdivision surfaces [31]-[35]. 

Few pentagons, hexagons and others are found in surface construction and 
reconstruction [36]-[41]. In [37], to generate features like sharp edges and cor-
ners, the authors merged Catmull Clark [31] and NURBS (Non-Uniform Ra-
tional B-spline) patches together to produce extended subdivision surfaces. In 
[38] [39], the authors presented a subdivision method that added extraordinary 
vertices to NURBS of arbitrarily high degree. Like [39], two methods [40] [41] 
could hold the geometrical details of neighboring polygons of extraordinary 
points. 

Because of the complex geometrical and topological structures of a target sur-
face, the limitations of scanning technologies, and the deficiency of a modeling 
scheme, a composite surface may be constructed with tiny holes or gaps that the 
target surface does not have [1]-[8] [17] [19] [20]. That is, the composite surface 
does not have the same topology as that of the target surface and cannot really 
represent the target surface in the mathematics and applications sense. 

The papers [1] [3] made a survey on existing well-known hole-filling algo-
rithms in 3D surface reconstruction and classified them. Researchers have pro-
posed different methods to fill the holes in surface construction. In [2], a piece-
wise hole filling algorithm was presented. The study [4] used the method of pos-
itive definite Radial Basis Functions in progressively filling the holes in surface 
reconstruction. The authors of [5] presented a scattered point set hole-filling 
method to fill the holes of an incomplete surface. The paper of [6] introduced a 
technique to fill large holes of both texture and structure in a LiDAR scan. In the 
research of [7], the authors proposed a depth hole filling method to fill holes in 
images obtained from the Microsoft Kinect sensor. In the research of [8], the 
authors’ argument was that for accessibility reasons or reflection problems, some 
parts of the object might not be scanned and could be formed as digitizing holes. 
The authors of [17] mentioned that many photos contained close-up cracks in 
the material of the sculpture that needed to reconstruct. In the research of [19], 
authors mentioned that in trimming models in CAD might cause unavoidable 
gaps in the models. In [20], to modify a gap where neighboring B-spline surface 
did not match exactly, the authors presented a locally refineable subdivision 
scheme called T-NURCCs (Non-Uniform Rational Catmull-Clark surface with 
T-junctions). 

With its complex geometrical and topological structures, a great number of 
the 3D data of points on the target surface are required to input for modeling. If 
the 3D data are acquired by laser-range scanning, they are unstructured point 
clouds and missing some information by under-sampling sometimes [9]. For 
these reasons, the modeling is susceptible to unexpected holes. And the know-
ledge of holes in the model is vital for many applications dealing with point set 
surfaces [9]. 

On the other hand, to make a composite surface hold fine local features, re-
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searchers of mesh model may add more sub-patches to some part of the compo-
site surface with local refinement [32] [37] [38] [40] [41]. Along with the num-
ber of patches and sub-patches further increasing, local refinement may bring 
new unexpected invisible flaws into the composite surface [17] [19] [20]. As 
known, the consistence of global topological structure is as important as the lo-
cal features for surface modeling. Holding the consistence of the global topolog-
ical structure can make the model correct in the topological sense while having 
local features can make the model delicate. Neither of them should be ignored. 
Therefore, it is necessary to detect the new defects of the composite surface after 
local refinement. 

In [9], the authors present a method of detecting holes in point set surfaces. 
Their method is based on boundary probability with three criteria: angle, 
half-disc, and shape criteria. It is effective to extract boundary loops by repeating 
the process of searching for each vertex and identifying boundary points with 
the criteria. Their method, however, does not guarantee to find all the unex-
pected holes in a surface model since it is probable. 

In [10], the authors present an empty disk approach for detecting the inner 
hole boundary of a planar point set based on Delaunay triangulation. They focus 
on the problem of detecting the boundary of individual inner holes in a planar 
point set. The limitation of their method is to detect only individual holes in a 
two-dimensional space, which is not appropriate for finding all the holes of a 3D 
model that is the issue studied in this paper. 

In this paper, the presented EAT algorithm is applied to testing the topologi-
cal structure of a mesh model gradually and globally to find all the flaws of the 
model and to modify them before passing a verified model to the succeeding 
process. Even better, it can be used to detect new defects of the model after local 
refinement. 

3. EAT Scheme 

A complicated surface model usually has a great deal of geometric details, and 
thus may contain a large number of vertices, edges and facets. The EAT has to 
scan and traverse all the vertices, edges and facets of the model to compute the 
Euler characteristic of the model. And then it can be compared with the Euler 
characteristic of its target surface. The larger number of edges and facets the 
model contains, the more time the EAT computing requires. 

In order that the code of the EAT is not left in the modeling program after ve-
rified, we adopt the strategy that a copy of the modeling program is prepared for 
flaw-searching, which is called the modeling companion, shown in Figure 2(a). 
The EAT algorithm code is inserted in the modeling companion rather than the 
modeling program itself. The EAT code is running only in the modeling compa-
nion. 

Each time a flaw is found in the model companion, the modeling companion 
is revised, and the modeling program should be revised and updated as well.  

https://doi.org/10.4236/apm.2020.102005


Y. K. Liu et al. 
 

 
DOI: 10.4236/apm.2020.102005 62 Advances in Pure Mathematics 
 

 
Figure 2. A simplified frame diagram with three layers: (a) At the top is the modeling 
tested with EAT; (b) In the middle is the computer graphics processing for rendering af-
ter modeling verified; (c) At the bottom are the applications of design and manufacturing 
in industry, and surface reconstruction in animation, visualization and others after re-
lated schemes verified. 
 
Since the EAT algorithm code is running only in the model companion, the 
modeling program is without the EAT code in itself and thus the verified mod-
eling program will not be slowed down by the EAT at run time. 

After the model has been verified completely with the EAT scheme and all the 
existing flaws of model have been corrected, the verified modeling program is 
assembled into the rendering pipeline, shown in Figure 2(b). If some flaws are 
related to a modeling method, the method should be modified. 

After the related modeling method has been validated, the method is inte-
grated into CAD environments in industry or the surface reconstruction systems 
of animation, visualization and others, shown in Figure 2(c). And the succeed-
ing procedures can be performed, as well. 

Since fault-testing with the EAT is at the modeling stage, we will focus on the 
layer at the top of Figure 2(a) in this section. 

3.1. Propositions in Algebraic Topology 

The EAT algorithm is the core of the EAT scheme. It is based on the following 
Definition 1, Proposition 1 and Proposition 2. 
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Definition 1 The Euler characteristic of a triangulated surface M is 

( ) v e fM n n nχ = − + ,                      (1) 

where vn  is the total number of vertices of M, en  is the total number of 
edges of M, and fn  is the total number of triangle facets of M [42]. 

It is obvious that the invariant of Euler characteristic is independent of the 
meshing of a surface. It can be shown in Figure 3. If two triangle facets with a 
common edge are replaced with a quad facet and fn  is referred to as the total 
number of facets in identity (1), as shown in Figure 3(a) and Figure 3(b), the 
identity (1) is still held. This deduction is based on the fact that the latter facet 
(no matter planar or curve) is homotopic to the former two triangle facets glued 
together. If each pair of three triangle facets has a common edge, these three tri-
angle facets are replaced with a pentagon facet, and the identity (1) is also held, 
shown in Figure 3(c) and Figure 3(d). Let us take the idea a step further. If each 
pair of four triangle facets has a common edge, these four triangle facets are re-
placed with a hexagon facet, and the identity (1) is held, too, shown in Figure 
3(e) and Figure 3(f). 

With the algebraic topologies of surfaces [42] [43], the following two proposi-
tions are obvious. 

Proposition 1 A compact surface has a numerical invariant called the Euler 
characteristic. 

Proposition 2 Suppose that there are two compact surfaces, 1S  and 2S . If 
their Euler characteristics are not identical, the topological structures of 1S  and  
 

 
Figure 3. Illuminating the invariant of Euler characteris-
tic independent of the meshing. 
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2S  are not consistent with each other. 
As the rigorous proofs of Proposition 1 and Proposition 2 are lengthy and re-

quire the homotopy theory, we do not give the proofs of Proposition 1 and 
Proposition 2, and readers can refer to the homotopy theory [42] [43]. 

Before the exploration of EAT algorithm, we have to define three sets of ver-
tices, edges and facets of a tested model, which most of modeling methods in 
surface construction and reconstruction apply to surface modeling. Here we 
re-organize them in a three-layer data structure, and register every vertex, edge 
and facet in Vertex list, Edge list and Facet list, respectively, in order to compute 
the Euler characteristic of the model at different modeling stages. 

3.2. Three-Layer Data Structure 

In surface modeling, the input is a set of points, which may be sampled on a tar-
get surface by sensors or scanned the outward surface of an object by a scanner. 
The set of points can be organized as the set of original vertices, 0V . Each ele-
ment of 0V  has three fields ( ), ,i i ix y z , which are three coordinates in an or-
thogonal coordinate system, respectively. 

According to the spatial relationships of vertices and the order of the facets’ 
being drawn, we construct a three-layer data structure for the modeling compa-
nion accompanied with the EAT. 

The data structure is shown in Figure 4. At the top abstract layer is Body  
 

 
Figure 4. The data structure of EAT algorithm in a model companion has 
three layers. The Body container is at the top abstract data layer, which con-
sists of three parts: Facet list, Edge list and Vertex list at the middle abstract 
layer. At the lowest abstract layer are Facet items, Edge items and Vertex items 
linked by Facet list, Edge list and Vertex list, respectively. 
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container, which consists of three parts, these being Facet list gF , Edge list gE , 
and Vertex list gV . 
• gF  represents the Facet list. It is used to add Facet item to it when a new fa-

cet is registered. 
• gE  represents Edge list. It is used to add Edge item to it when a new edge is 

registered. 
• gV  represents Vertex list. It is used to add Vertex item to it when a new ver-

tex is registered. 

gF , gE , and gV  are at the middle abstract layer of the three-layer data 
structure. At the lowest layer are three types of items: Facet item  
( ), ,f fID fvList fc , Edge item ( ), , ,e eID bvPointer evPointer ec , and Vertex item 
( ), , , ,v vID xCoord yCoord zCoord vc . 

• ( ), ,f fID fvList fc  is Facet item, which consists of three fields: identification 
of facet fID , facet vertex list fvList , and facet counter fc . Each distinct fa-
cet has a unique fID . Facet vertex list fvList  registers the vertex sequence 
of the facet item in the order of vertices’ being drawn. Facet counter fc  is 
used to count the times of being drawn of the facet. 

• ( ), , ,e eID bvPointer evPointer ec  is Edge item, which is composed of four 
fields: identification of edge eID , a pointer to the beginning vertex  
bvPointer , a pointer to the end vertex evPointer , and edge counter ec . 
Each distinct edge has a unique eID . Each edge is connected to two vertices: 
the beginning vertex to which is pointed by the pointer of bvPointer , and 
the end vertex towards which is pointed by the pointer of evPointer . The 
number of facets connected to the edge is counted by the counter of ec  
during modeling. 

• ( ), , , ,v vID xCoord yCoord zCoord vc  is Vertex item with five fields: identifi-
cation of vertex vID , X coordinate xCoord , Y coordinate yCoord , Z coor-
dinate zCoord , and vertex counter vc . Every individual vertex has a unique 
vID  and three coordinate values ( ), ,xCoord yCoord zCoord  in the mod-
eling space. The number of edges connected to the vertex is counted by the 
counter of vc  during modeling. 

3.3. EAT Algorithm 

The EAT algorithm includes two different function parts. One function part is 
named the EAT testing algorithm (EAT-TA), shown in Figure 5. It is used to 
register a new facet, and its new vertices and new edges in Facet list, Vertex list 
and Edge list, respectively, and to increment each of their counters. Its code is 
embedded just after every facet modeling code in the model companion. 

The other function part is called the EAT statistic algorithm (EAT-SA), also 
shown in Figure 5. The EAT-SA collects the statistics of the total numbers of 
vertices, edges and facets of the surface model, computes the Euler characteristic 
of the surface model, and outputs the results at different modeling stages. 

1) EAT Testing Algorithm (EAT-TA) 
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Figure 5. The EAT algorithm including two 
function-wise parts: the EAT testing algo-
rithm (EAT-TA) and EAT statistic algorithm 
(EAT-SA). 

 
To do exactly counting of the numbers of facets, edges and vertices of a tested 

surface model, the EAT-TA has to scan and traverse the model. As the modeling 
in surface construction and reconstruction is a dynamic and progressive process, 
the EAT-TA can take advantage of this process through each facet modeling ac-
companied by the EAT testing. 

Figure 6 shows the calling site of EAT-TA and related operations in the mod-
el companion. As shown, a call of the EAT-TA is usually made just after the 
tested facet modeling. Figure 7 shows the pseudocode of EAT-TA, which can be 
easily translated into VC++ language or other computer languages. 

During a facet modeling, some vertices and edges may have not been regis-
tered while other vertices and edges may have been registered in the previous 
facet modeling. At this moment, the vertices and edges that have not been regis-
tered are referred to as new vertices, newv , and new edges, newe , respectively, 
which have not been added to Vertex list and Edge list. The vertices and edges 
that have been registered are called old vertices, oldv , and old edges, olde , which 
already exist in Vertex list and Edge list, respectively, shown in Figure 7. 

That is, a new vertex or new edge has to be registered first and then their 
counters increment. For an old vertex or old edge, it is not registered again, but 
its counter increments. 

2) EAT Statistic Algorithm (EAT-SA) 
The EAT-SA is for statistic computing of the numbers of vertices, edges, and 

facets. Figure 8 shows the pseudocode of EAT-SA, which can be also translated 
easily into VC++ or other computer languages. 

The EAT-SA can be put at the end of the modeling companion for the 
fault-detecting of the whole model. It can be also inserted at any intermediate 
site in the modeling companion. In this paper, these intermediate sites are called 
test points. 

In fact, it is more effective to set a test point at a site where we want to detect 
whether or not the modeling before this site holds any defect. 

A intermediate test point can help search for and locate the defects in the  
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Figure 6. The calling site of the EAT-TA and the 
related operations of a facet in the model compa-
nion. 

 

 
Figure 7. The EAT testing algorithm (EAT-TA) 
pseudocode. 

 

 
Figure 8. The EAT statistic algorithm (EAT-SA) 
pseudocode. 
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partial modeling just before this test point and correct them in the model com-
panion and in the modeling program as well, shown in Figure 2(a). 

When considering that there are numerous facets in a complicated surface 
model, there may exist a large number of defects in the whole unverified model 
[9]. In the progressive test way, a large problem of numerous defects can be di-
vided into smaller ones with several defects. It is easier to conquer each of 
smaller sub-problems by correcting one of them at a time than the larger repair 
problem of the complex surface model as a whole in one step. 

3.4. Progressive EAT Procedure 

As known before, a surface modeling is a progressive process, and the EAT-SA 
can be done at different stages as well. It means that it can be used to test an un-
finished model in which some facets have been constructed and others have not 
been. 

We can set a test point and make an EAT-SA calling just after the drawing of 
the unfinished model. The EAT algorithm can help check whether or not the 
partial model has the Euler characteristic equal to that of its corresponding part 
of the target surface. If yes, the partial model has been verified. If not, the 
EAT-TA can locate the faults that are indicated to correct. 

After the previous partial model has been corrected and verified, the modeling 
is resumed. We call the test point that has just been verified the last verified 
point. 

For newly modeling, a new test point can be set at a proper distance after the 
last verified point, and a new EAT-SA calling is inserted at this new test point. 
We call this new point the current test point. 

As the facets before the last verified point have been verified without faults, 
new faults detected by the EAT-SA at the current test point exist in the facets 
between the last verified point and the current test point. For the model compa-
nion, these newly-detected facets are the new facets items that have been just 
added to Facet list. In this way, it is easy to locate the new faults. 

Accompanied by the progressive EAT procedure, the newly modeling is al-
ways constructed on the foundation of the verified partial model. 

If the results of EAT-SA at the current test point show that the Euler characte-
ristic of the partial model is not identical to that of the corresponding part of the 
target surface, we have to know which facet modeling may cause the problem. In 
this situation, we can set 1 to the argument of outputting the information of 
vertex items and edge items of facets in the newly modeling after the last verified 
point, and set 0 to the arguments of the facet items before the last verified point. 
The setting of the arguments has been indicated in Figure 6. In this way, we can 
focus just on the newly-added facet items. It is not necessary to examine the fa-
cet items in the partial model before the last verified point. 

At the modeling end of the target surface, we put the final EAT-SA at the end 
of model companion. The resulting numbers of total facets, edges and vertices of 
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the model, and its Euler characteristic are outputted and displayed on the com-
puter screen. We can compare the outputted Euler characteristic to that of the 
target surface. If they are not equal to each other, try to find the problem loca-
tions in the newly modeling after the last verified point and correct the related 
facets in the model companion and the modeling program as well. And perform 
the EAT algorithm again until all the faults are corrected. If two Euler characte-
ristics are identical, the modeling has been verified. And the model can be used 
to represent the target surface upon the Euler characteristic invariant according 
to Proposition 1 and Proposition 2. 

In the next section, some EAT applications will be presented, which can illu-
strate the progressive EAT procedure clearly. 

4. EAT Applications and Results 

In this section, the EAT algorithm is applied to test the stamp model, shown in 
Figure 1. In Sections 4.1, 4.2, and 4.3, we present three application cases that 
show the models with some faults tested by the EAT scheme. In Section 4.4, we 
will present the model companion accompanied by the progressive EAT proce-
dure at several stages. 

4.1. The First Case with a Defect Tested by EAT 

In this section, we present a partial stamp model that has a tiny triangle without 
filling. The triangle is so small that is almost invisible. 

In this case, the modeling before the last verified point has been verified, 
shown in Figure 9. To make the views distinct, facets in different parts are de-
picted with different colors, seen in the front view and side view of fill-area im-
ages of Figure 9(a) and Figure 9(b). In Figure 10, the tested results with the 
EAT scheme on the partial model in Figure 9 show that the number of vertices, 
edges, and facets of the partial model are 1658, 2938, and 1279, respectively. Its 
Euler characteristic is −1, which is the same as that of the corresponding com-
pact surface with two inside holes. 
 

 
Figure 9. The modeling images of partial stamp model that has been 
verified. (a) The front view of fill-area image. (b) The side view of 
fill-area image. 
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Figure 10. A screenshot of execution results of EAT algorithm of the 
partial stamp model in Figure 9. The first row is the vertex number, 
1658; the second row is the edge number, 2938; the third row is the 
facet number, 1279; and the bottom row is the Euler characteristic, 
−1. 

 
At this time, we set a new current test point and test the part between the last 

verified point and the current test point. 
Figure 11 shows the tested results with the EAT scheme at the current test 

point. The Euler characteristic is −2, which is different from the Euler characte-
ristic of the corresponding compact surface with two inside holes, −1. For this 
reason, the modeling between the last verified point and the current test point 
has to be checked carefully. Through exploration and location, a tiny triangle in 
which is not filled is found.  

Figure 12(a) is the front view of fill-area image, and Figure 12(b) is the side 
view of fill-area image of the partial model with the empty triangle. The empty 
triangle is too small to be identified in Figure 12(a) and Figure 12(b). 

After the image with the invisible empty triangle in Figure 12 having been 
zoomed in and turned to be illuminated, a tiny white point appears at the joint 
between the green and the purple parts circled by the black rectangle of Figure 
13(a). Figure 13(b) is the image in the black rectangle in Figure 13(a) that is 
zoomed in even closer. In Figure 13(b), we can see the empty part clearly, which 
looks like a narrow segment. The length of one edge of this triangle is almost 
0.001 of lengths of the other two. It is why the triangle is difficult to be identi-
fied. 

Let us modify the defect by filling in the empty triangle and test the model 
again. The results of this new test are shown in Figure 14. At the top first row is 
the information of three vertex items of the filled triangle, these being vertex 
items of vIDs 1698, 1699, and 6807. The vertex counter (vc) values of them are 3, 
4, and 4, respectively. 3 means the vertex item of vID 1698 joins three edges, and 
4 means the vertex item of vID 1699 or 6807 links four edges. 

The top second, third and fourth rows of Figure 14 are the information of 
three edge items of the filled triangle, which are edge items with eIDs 2858, 2991, 
and 2996, respectively. All of their edge counter (ec) values are 2. 2 means each 
of them connects two facets. 

The bottom four rows of Figure 14 show the results at the current test point. 
The number of vertices is 1738, the number of edges is 3090, and the number of 
facets is 1351. The Euler characteristic is −1, which is the same as that of the 
corresponding compact surface with two inside holes, −1. This partial stamp 
model has been modified and verified at this stage. 
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Figure 11. A screenshot of execution results of EAT algorithm. 
The top four rows are the results of the partial stamp model be-
fore the last verified point, which is shown in Figure 10. The 
bottom four rows are the results of the partial stamp model be-
fore the current test point. The bottom first row is the vertex 
number, 1738; the bottom second row is the edge number, 3090; 
the bottom third row is the facet number, 1350; the bottom 
fourth row is the Euler characteristic, −2. 

 

 
Figure 12. The modeling images of partial stamp model with an 
invisible empty triangle before the current test point. (a) The 
front view of fill-area image. (b) The side view of fill-area image. 

 

 
Figure 13. The images of the partial stamp model of Figure 12, 
which are enlarged. (a) The image of facing upward view of the 
partial stamp model with a tiny empty triangle facet that is a 
white point marked by the black rectangle. (b) The enlarged im-
age in the black rectangle. 
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Figure 14. A screenshot of the execution results of the EAT algo-
rithm after the defect of Figure 13 has been modified. The top 
first row is vID and vertex counter (vc) value of each vertex item 
of the modified triangle. The top second, third and fourth rows 
are eID and edge counter (ec) value of each edge item of the 
modified triangle. The bottom half are the results of numbers of 
vertices, edges, and facets of the partial model in Figure 13 hav-
ing been corrected, and its Euler characteristic of −1. 

4.2. The Second Case with a Defect Tested by EAT 

In this section, we present the second case with a quad that was ignored before 
and is tested by EAT. 

The modeling before the last verified point has been verified, shown in Figure 
15. Figure 15(a) is the front view of fill-area image; Figure 15(b) is the side view 
of fill-area image. In Figure 16, the results at the last verified point show that the 
number of vertices, edges, and facets of the partial model are 2189, 3963, and 
1773, respectively. Its Euler characteristic is −1, which is the same as that of the 
corresponding compact surface with two inside holes. 

After the last verified point, some facets are added to the modeling. A new 
current test point is set and the EAT is executed. Figure 17 shows the results at 
the current test point. The Euler characteristic is −2, which is different from the 
Euler characteristic of the corresponding compact surface with two inside holes, 
−1. Figure 18(a) is the front view of fill-area image of the partial model before 
this current test point, and Figure 18(b) is its side view of fill-area image. In 
Figure 18, the fault is invisible. 

Let us take a closer look at the newly-added facets, shown in Figure 19. A 
narrow white quad appears at the joint between the green and the orange parts 
marked by the black rectangle of Figure 19(a). Figure 19(b) is the image circled 
by the black rectangle in Figure 19(a), which is zoomed in even closer. In Fig-
ure 19(b), we can see the empty quad more clearly, which looks like a narrow 
belt. It is so small that it can be seen only in a proper direction. That is why the 
quad is difficult to be found. 

Next, we modify the defect by filling in the empty quad and test the model 
again. The results of this test are shown in Figure 20. At the top first row is the 
information of four vertex items of the filled quad, these being vertex items of 
vIDs 7786, 7788, 7789 and 7790. The vertex counter (vc) values of them are 4, 3, 
3, and 3, respectively. 4 of vc means that the vertex item of vID 7786 joins four 
edges, and 3 of vc means that the vertex item of vID 7788, 7789, or 7790 links  
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Figure 15. The modeling images of partial stamp model that 
has been verified for the second example in Section 4.2. (a) 
The front view of fill-area image. (b) The side view of fill-area 
image. 

 

 
Figure 16. A screenshot of execution results of EAT algo-
rithm, displaying results of numbers of vertices, edges, and fa-
cets of the partial stamp model in Figure 15, and its Euler 
characteristic of −1. 

 

 
Figure 17. A screenshot of execution results of EAT algo-
rithm. The top half is the results of numbers of vertices, edges, 
and facets of the partial stamp model before the last verified 
point, and its Euler characteristic of −1. The bottom half is the 
results of the partial stamp model before the current test point, 
and the Euler characteristic of −2. 

 
three edges. 

The top second, third, fourth and fifth rows of Figure 20 are the information 
of four edge items of the filled quad, which are edge items with eIDs 4007, 4010, 
4013, and 4045, respectively. Three of their edge counter (ec) values are 2. 2 of ec 
means each of them connects two facets. One of them is 1, which means that 
when this quad facet is constructed, the edge item of eID 4045 is a new edge, 
shown in Figure 7. 

The bottom four rows of Figure 20 show the results at the current test point. 
The number of vertices is 2255, the number of edges is 4082, and the number of  
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Figure 18. The images of partial stamp model with an 
invisible empty quad before the current test point. (a) 
The front view of fill-area image. (b) The side view of 
fill-area image. 

 

 
Figure 19. The images of the partial stamp model in Figure 18, which are en-
larged. (a) The image of facing downward view of the partial stamp model with a 
tiny empty quad facet that is a white narrow quad marked by the black rectangle. 
(b) The enlarged image in the black rectangle. 

 

 
Figure 20. A screenshot of execution results of EAT al-
gorithm after the defect in Figure 19 is modified. The 
top first row is vID and vertex counter (vc) value of each 
vertex item of the modified quad. The top second, third, 
fourth and fifth rows are eID and edge counter (ec) value 
of each edge item of the modified quad. The bottom half 
is the results of numbers of vertices, edges, and facets of 
the partial stamp model in Figure 19 that has been cor-
rected, and its Euler characteristic of −1. 
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facets is 1826. The Euler characteristic is −1, which is the same as that of the 
corresponding compact surface with two inside holes, −1. This partial stamp 
model is verified at this stage. 

4.3. The Third Case with a Defect by EAT 

In this section, we present the third case with a fault that is counter-intuitive and 
tested by EAT. 

In this case, we still use the partial model stage in Figure 15 as the last verified 
point. In the newly-added facets, we set a new test point and search for a prob-
lem different from the previous two. 

In Figure 21, the front and side views of fill-area and wire-frame images are 
shown. Let us zoom in the image of Figure 21(c) and take a closer look at the 
right top corner of the top character, circled by the blue rectangle in Figure 
22(a). Figure 22(b) and Figure 22(c) are amplified images in the blue rectangle 
of Figure 22(a). In Figure 22(c), five vertex items are marked with their vIDs 
6891, 2650, 2567, 2566, and 6874, respectively. 

In the geometrical sense, the pentagon bordered with five edges ({6891, 2650}, 
{2650, 2567}, {2567, 2566}, {2566, 6874}, and {6874, 6891}) is the same as the 
quad bordered with four edges ({6891, 2650}, {2650, 2567}, {2567, 6874}, and 
{6874, 6891}). In the topologic sense, they are, however, different. The former 
facet has five vertices, five edges and one facet; the latter facet consists of four 
vertices, four edges and one facet. And the edge of {2567, 6874}, which is the 
yellow one in Figure 22(c), is different from the two edges, {2567, 2566} and  
 

 
Figure 21. The images of partial stamp model for testing a new 
fault in Section 4.3. (a) The front view of fill-area image. (b) The 
side view of fill-area image. (c) The front view of wire-frame im-
age. (d) The side view of wire-frame image. 
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Figure 22. The images of the partial stamp model in Figure 21(c), which are enlarged. (a) 
The image of the partial stamp model with a problem quad marked by the blue rectangle. 
(b) The amplified image in the blue rectangle of (a). (c) The quad pointed by the red ar-
row in (b) is redrawn and marked with vIDs of vertex items. The yellow edge is the prob-
lem one. 
 
{2566, 6874}. 

For one edge, {2567, 6874}, the results of the EAT are shown in Figure 23. It 
results in an Euler characteristic, −2, which is different from −1 of the corres-
ponding compact surface with two inside holes. The reason is that the edge of 
{2567, 6874} is treated as one edge different from as two edges, {2567, 2566} and 
{2566, 6874}. 

For the modeling of the neighborhood of this problem facet, two edges, {2567, 
2566} and {2566, 6874}, have been added to Edge list, Eg. In the topologic sense, 
it means that there is a crack between the new Edge {2567, 6874} and two old 
Edges, {2567, 2566} and {2566, 6874}. That is, this model is corresponding to a 
compact surface with three inside holes. 

We modify this fault by dividing Edge {2567, 6874} into two Edges, {2567, 
2566} and {2566, 6874}, and test it with the EAT algorithm again. The results are 
shown in Figure 24. Compared to the results in Figure 23, there are five vertex 
items in Figure 24, but four vertex items in Figure 23. The vertex item of vID 
2566 is added to this pentagon facet. There are five edge items in Figure 24, but 
four edge items in Figure 23. Among these five edge items, three edge items of 
eIDs 3933, 3935, and 4053 are old edges, and their edge counter (ec) values are 2. 
The other two edge items of eIDs 4054 and 4055 are new edges, and their edge 
counter (ec) values are 1. But in Figure 23, there is one old edge item of eID  
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Figure 23. A screenshot of execution results of EAT algorithm for the 
partial model in Figure 22. The top first row is vID and vertex counter 
(vc) value of each vertex item of the problem quad. The top second, third, 
fourth and fifth rows are eID and edge counter (ec) value of each of four 
edge items of the quad. The bottom half is the results of numbers of ver-
tices, edges, and facets of the partial stamp model, and its Euler characte-
ristic of −2. 

 

 
Figure 24. A screenshot of execution results of EAT algorithm for the 
partial model of Figure 22 that has been modified by dividing Edge 
{2567, 6874} into two Edges, {2567, 2566} and {2566, 6874}. The top first 
row is vID and vertex counter (vc) value of each vertex item of the pen-
tagon. The top second, third, fourth, fifth and sixth rows are eID and 
edge counter (ec) value of each of five edge items of the pentagon. The 
bottom half is the results of numbers of vertices, edges, and facets of the 
partial stamp model in Figure 22 that has been corrected, and its Euler 
characteristic of −1. 

 
4053, and three new edge items of eIDs 4054, 4055, and 4056. It means one of 
new edge items, the edge item of eID 4056 (that is Edge {2567, 6874}) does not 
meet with the old ones, the edge items of eIDs 3933 and 3935 (Edges {2567, 
2566} and {2566, 6874}). There is a crack between them. 

In Figure 23, the number of vertices is the same as 2255 in Figure 24. Both 
numbers of facets in Figure 23 and Figure 24 are equal to 1826. But the number 
of edges, 4083, in Figure 23, is one more than 4082 in Figure 24. Therefore, the 
Euler characteristic, −2, in Figure 23, is one less than that −1 in Figure 24. 
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In Section 4.4, we will present the stamp model companion accompanied by 
the progressive EAT procedure at several steps until the whole model construc-
tion is finished and verified. 

4.4. Testing the Stamp Model at Several Stages with EAT 

In this section, we present the construction process of the stamp model accom-
panied by the EAT procedure. Because of the limitation of this paper length, we 
only display four typical stages in this process. Of course, the real construction 
process of the stamp model has been tested and modified at far more than four 
stages because it has many details of the geometrical and topological structures. 

1) Testing Fringe Ring and Middle Rows of Top Face 
An unfinished model is shown in Figure 25. This unfinished model includes 

the fringe ring and several middle lines of top face of the stamp model. Most fa-
cets are quads. Several triangle facets are filled at corners. They are shown in the 
front view and side view of wire-frame images in Figure 25(a) and Figure 25(c). 
The corresponding fill-area images are shown in Figure 25(b), and Figure 
25(d). Facets in different parts are depicted in different colors. 

In Figure 26, four rows are the results of numbers of vertices, edges, and fa-
cets of the unfinished model in Figure 25, and its Euler characteristic, respec-
tively. We can see that the number of vertices is 1213, the number of edges is 
2054, and the number of facets is 840. Its Euler characteristic is −1. This Euler 
characteristic is equal to one of the corresponding compact surface with two in-
side holes. Thus, this partial model is verified. 

2) Testing Half Top Face 
 

 
Figure 25. The modeling images of fringe ring and middle rows 
of top face of the stamp model. (a) The front view of wire-frame 
image. (b) The front view of fill-area image. (c) The side view of 
wire-frame image. (d) The side view of fill-area image. 
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The half top face of stamp model is shown in Figure 27. This unfinished 
model consists of the fringe ring and half top face of the stamp. 

Most facets in this unfinished model are quads. Several triangle facets are 
filled at corners, and several pentagons and hexagons are formed in some facets 
with curved borders. It is shown in the front view and side view of wire-frame 
images of Figure 27(a) and Figure 27(c). Facets of different parts are depicted 
in different colors in the front view and side view of fill-area images of Figure 
27(b) and Figure 27(d). 

The tested results of the model in Figure 27 are shown in Figure 28. It is seen 
that the number of vertices is 2809, the number of edges is 5219, and the number 
of facets is 2410. Its Euler characteristic is 0, which is equal to that of the corres-
ponding compact surface with one inside hole. The partial model is verified at 
this stage. 

3) Testing Top Face, Side Ring and Back Face 
The top face, side ring and back face of stamp model are constructed at this 

stage, shown in Figure 29. All of facets of side ring and back face are quads. 
Figure 29(a), Figure 29(c) and Figure 29(e) are the front view, side front  

 

 
Figure 26. A screenshot of execution results of EAT algorithm, 
displaying numbers of vertices, edges, and facets of the partial 
model in Figure 25, and its Euler characteristic of −1. 

 

 
Figure 27. The modeling images of half top face of the stamp 
model. (a) The front view of wire-frame image. (b) The front 
view of fill-area image. (c) The side view of wire-frame image. (d) 
The side view of fill-area image. 
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Figure 28. A screenshot of execution results of EAT algorithm, dis-
playing numbers of vertices, edges, and facets of the partial model in 
Figure 27, and its Euler characteristic of 0. 

 

 
Figure 29. The modeling images of the top face, side ring and back 
face of the stamp model. (a) The front view of wire-frame image. (b) 
The front view of fill-area image. (c) The side front view of wire-frame 
image. (d) The side front view of fill-area image. (e) The side back 
view of wire-frame image. (f) The side back view of fill-area image. 

 
view, and side back view of wire-frame images, respectively. Figure 29(b), Fig-
ure 29(d) and Figure 29(f) are the front view, side front view, and side back 
view of fill-area images, respectively. 

The tested results of the partial model in Figure 29 are shown in Figure 30. 
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We can see that the number of vertices is 5769, the number of edges is 11,134, 
and the number of facets is 5366. Its Euler characteristic is 1, which is equal to 
that of the corresponding compact surface without any inside hole. The partial 
model is verified at this stage. 

4) Testing the Whole Stamp Modeling 
The whole stamp modeling is finished at this stage, shown in Figure 31. The 

finished model is composed of the top face, side ring, back face and handle of the 
stamp model. Most facets of the handle are quads, except the triangle facets at 
the tip of handle. 

Figure 31(a) and Figure 31(c) are the front view and side back view of 
wire-frame images, respectively. Figure 31(b) and Figure 31(d) are the front 
view and side back view of fill-area images, respectively. Figure 1 shows the 
front side views. 

The tested results of the finished stamp model in Figure 31 are shown in Fig-
ure 32. It is seen that the number of vertices is 9514, the number of edges is 
18,910, and the number of facets is 9398. Its Euler characteristic is 2, which is 
consistent with that of the corresponding surface of a 3D ball. The whole mod-
eling has been verified totally at this stage. 
 

 
Figure 30. A screenshot of execution results of EAT algo-
rithm, displaying numbers of vertices, edges, and facets of the 
partial model in Figure 29, and its Euler characteristic of 1. 

 

 
Figure 31. The modeling images of finished stamp model. The 
front view of (a) the wire-frame image and (b) fill-area image. 
The side back view of (c) wire-frame image and (d) fill-area 
image. 
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Figure 32. A screenshot of execution results of EAT algo-
rithm, displaying numbers of vertices, edges, and facets of the 
finished model in Figure 31, and its Euler characteristic of 2. 

 
For the EAT algorithm, there are more application cases than the above. Since 

we cannot present all of them, we only explain some more features here. 
We first explain the meanings of three more indicators of the EAT algorithm 

in applications, these being the face counter fc, edge counter ec and vertex 
counter vc. 

As known before, during testing, the EAT scans facets of a model one facet 
after another without any repeated facet. The facet counter fc value of the 
scanned facet is equal to 1. If its fv is greater than 1, the facet has a defect that 
must be modified. Because an edge in a simply connected surface model can be 
connected to two facets at most, the edge counter ec value of the edge is smaller 
than or equal to 2. If the ec value is greater than 2, the edge has a defect that 
must be modified or the tested surface model is not simply connected. The value 
of a vertex counter vc in a scanned facet can be a positive integer, which means 
there are vc number of edges connected to the vertex item. 

In addition, for the model companion, one of the important features of the 
EAT algorithm is that the defect of a facet can be tested, found, and immediately 
modified at the stage of this facet modeling. In this way, a verified model can be 
always provided to the succeeding process, shown in Figure 2. 

5. Conclusions 

With the algebraic topology, the EAT algorithm opens a new test window for 
observing and examining surface modeling in surface construction and recon-
struction. It computes the Euler characteristic of a model, and examines the to-
pologic consistence of the model by comparing the Euler characteristic of the 
model with that of its target surface. 

The EAT algorithm consists of two functions: EAT testing algorithm (EAT-TA) 
and statistic algorithm (EAT-SA). Both functions are short and flexible, so they 
are easily inserted in a model companion program. Even better, a clean and veri-
fied model can be provided without the EAT code left after the EAT-searching. 

The EAT algorithm is adaptable and can be used to test different polygon fa-
cets of various surface models in surface construction and reconstruction. The 
EAT algorithm is independent of the metrics of facets. A facet much smaller 
than most of facets in a model can be identified. 

In future, the EAT algorithm will be applied to test more forms of models that 
may have different values of Euler characteristics and different topologic struc-
tures. It can be sure that more potential of the EAT algorithm can be revealed. 
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