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Abstract 
Motivated by previous papers with conventional models of Geometric Brow-
nian Motion (Hereafter GBM) or Mean-Reverting (Hereafter MR), we discuss 
the classical investment timing problem in this paper by assuming the output 
price follows Heston-GBM process. That is, constant volatility in the classical 
GBM or MR framework is replaced by stochastic volatility in Heston-GBM 
model. We first derive the asymptotic solution for the investment timing prob-
lem. Then the impacts of stochastic volatility on trigger prices and the range of 
inaction are demonstrated by numerical simulation. Lastly, we examine the ana-
lytical properties of trigger prices and the range of inaction quantitatively as 
well as qualitatively. 
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1. Introduction 

In the real world, most investment decisions are made in an uncertain back-
ground and are costly to reverse in the future. Such as firms enter and exit for-
eign markets in responding to real exchange rate fluctuations. And corporations 
decide whether to initiate new or terminate existing products based on uncertain 
profitability prospects of these actions. There are many other similar examples 
can be offered, but we won’t enumerate them one by one here in order to free 
from repeating. In view of these facts, a number of investment models have been 
studied within stochastic calculus framework in the past decades. Nowadays, the 
interest has been motivated and great progresses have been made in this field 
due to the recent advances in the theory of mathematical finance and of stochas-
tic optimal control. Absolutely, considerable results have been obtained. 
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Usually, industries often go through successive phases of entry and exit with 
the change of economic environment. For example, excess entry may be ob-
served when the market demand is unknown and a wave of exit is expected to 
follow. Moreover, there may be exit by either too many or too few firms because 
demand uncertainty is not completely resolved, then in this case, a new wave of 
entry or exit respectively will follow in turn. It’s well known that much work on 
investment, specifically that exploits an analogy between real and financial in-
vestment decisions, which known as “real options” approach has been done be-
fore. In this paper, however, we still present a dynamic model of entry and exit 
under price uncertainty to establish optimum time for entry and exit as strategic 
decisions for a firm, decisions that can be modeled through real options. 

We begin by making an overview as well as stating the relation of this paper to 
some recent literature on this topic. Eriksson [1] presented a dynamic model of 
industry equilibrium to show how growth, entry and exit of firms are interre-
lated. The results demonstrate that simultaneous occurrence of entry and exit 
can be explained formally by taking into account the fact that every firm’s prof-
itability to some degree is subject to random shocks, and prove that industry 
growth comes mainly from existing firms. Under the condition that output price 
follows a random walk, Dixit [2] examined a firm’s entry and exit decisions. The 
paper finds there exists a pair of trigger prices for entry and exit, where entry trig-
ger price exceeds the variable cost plus the interest on the entry cost, while the 
exit trigger one is less than the variable cost minus the interest on the exit cost. A 
dynamic stochastic model for a competitive industry which endogenously de-
termines processes for entry and exit and for individual firm’s output and em-
ployment was developed and analyzed in Hopenhayn [3]. The author presents 
conditions under which there will be entry and exit in the stationary equilibrium 
by extending long run industry equilibrium theory to account for entry, exit, and 
heterogeneity in the size and growth rate of firms. Also, entry and exit are part of 
the limiting behavior of the industry and not only part of the adjustment to a 
steady state is showed. The interlinked nature of decisions is shown to be essen-
tial even in the deterministic limit in Kongsted [4] by establishing the general 
deterministic limit that corresponds to Dixit’s model of entry and exit decisions 
under uncertainty. The limiting case, we mention that, without uncertainty may 
be interesting in itself, and is helpful in explaining numerical results appearing 
in literature regarding the volatility of price process. Applying a dynamic model 
of intertemporal entry and exit in perfectly competitive markets with demand 
uncertainty and Bayesian learning, Vettas [5] not only presented a unique equi-
librium path characterized by a pair of simple zero-expected profit equations, but 
also suggested there are waves of entry and exit, and firms operate under uncer-
tainty during each of these phases. Duckworth and Zervos [6] considered an in-
vestment model involves entry and exit decisions as well as decisions related to 
production scheduling, which is a generalization to many models that have been 
studied in previous literature. Using stochastic dynamic programming approach, 
one closed form analytic solution that can take qualitatively different forms de-
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pending on parameter values is obtained. 
In the past decade, many researchers spent much time and energy to investi-

gate this area from different aspects, and a number of new and useful results 
have been achieved. Within these papers, Amir and Lambson [7] constructed an 
infinite-horizon, stochastic model of entry and exit with sunk costs and imper-
fect competition. They find that for the general dynamic stochastic game, there 
exists a sub-game perfect Nash equilibrium as a limit of finite-horizon equilibria, 
which has a relatively simple structure characterized by two numbers per finite 
history. And relative to a social optimum, it tends to exhibit excessive entry and 
insufficient exit under very general conditions. Considering the exported-oriented 
manufacturer with risk neutrality and rational expectation to make decisions to 
switch production location freely between domestic and foreign ones, Lin and 
Wu [8] extended the build to order production model under uncertainty of ex-
change rate. The paper claims that the optimal entry and exit critical points of 
Cobb-Douglas production function are equal no matter using real options or net 
present value method as long as both the cost of production transferring and the 
drift of real exchange rate are zero. Therefore, no matter where the production 
locations are, export-oriented manufacturer can make decisions at the optimal 
critical value. Further, another way of thinking for export-oriented manufacturer 
is provided. Entry and exit decisions under price uncertainty are discussed in 
Sødal [9] using a discount factor approach to investment, by which the firm’s 
value can be expressed as a function of a set of trigger prices at which investment 
takes place and the optimal policy can be determined by simple maximization. 
The paper, which based on the model proposed in Dixit’s, expands to construc-
tion and scrapping decisions, investment lags, diminishing production capacity, 
and limits to the number of lay-up periods. Under uncertainty and through a 
project analyzed by a company from furniture industry, Vintila [10] suggested 
that entry in the market takes place when total cost is much lower than price lev-
el, whereas strategy to exit from the market is adopted when variable cost is 
much higher than price level. In addition, the effect of this phenomenon is ex-
amined by changing model’s parameters. Hanazono and Yang [11] discussed the 
dynamics of entry and exit based on firm’s learning about its relative cost posi-
tions. They claim that firms with relatively lower costs are viable in the long-run 
since market demand only accommodate a fraction of firms to operate, while 
some firms will exit from market if excessive entry occurs. Besides, the unique 
symmetric sequential equilibrium, whose properties are in line with empirical 
observations is derived. That is, with lower cost firms entering earlier than high-
er cost ones, entry occurs gradually, and exiting firms are among the ones that 
entered later. Meanwhile, equilibrium overshooting probability is always positive 
but decreasing over time. O’Brien and Folta [12] examined whether the option val-
ue of keeping an operation alive will deter firms from exiting an industry. They 
found that uncertainty dissuades firms from exiting an industry, but only when 
the sunk costs of entering and exiting that industry are sizeable. Furthermore, 
sunk costs can be influenced by the technological intensity of an industry, by the 
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extent to which a firm competes on the basis of innovation, and by the firm’s 
diversification strategy has been argued and shown. A firm’s entry and exit deci-
sions are examined in Tsekrekos [13] under the assumption that the output equi-
librium price follows an exogenous mean reverting process. The paper finds that 
mean reversion has significant effects both on firm-specific entry and exit deci-
sions and on the balance of entering and exiting firms in an industry. Thus, use 
the more tractable GBM process in models of aggregate industry investment as 
an approximation for the mean-reverting process would be improper. 

As we all know, firms in developing industries decide whether and when to 
enter the market depending on the state of demand, existing firms in the indus-
try, and the firm’s capabilities. Thus, a model of increasing demand, in which 
firms decide when to enter the market anticipating the strategic behavior of oth-
er potential entrants, and the effects of entry on future potential entrants has 
been examined in Shen and Villas-Boas [14]. They proved that the ability of ear-
ly entry to defer future competitor’s entry leads firms to enter the market at a 
rate faster than demand is expanding. Generally, if there is the potential for 
many firms to enter the market, then firms may be less likely to enter due to fu-
ture competitor entry to correct any market opportunities. While firms end up 
entering the market at a faster rate in the early periods if they enter the market 
depending on their fixed capabilities rather than depending on the firm’s cir-
cumstances at each moment in time. Recently, Piccolo [15] proved that if entry 
is relatively more costly than monitoring, then the equilibrium number of firms 
decreases with uncertainty in a model of competing managerial firms. Introduc-
ing idiosyncratic firm efficiency shocks into a continuous-time general equili-
brium model of trade with heterogeneous firms proposed by Impullitti et al. [16], 
they points that hysteresis in export market participation will rises in the pres-
ence of sunk costs of export entry and uncertain efficiencies. For one thing, once 
a firm achieves a given size, then it will enter into the export market to reflect its 
efficiency, but may keep exporting even if its efficiency falls below the initial en-
try level. For another thing, unlike other firms that never enter into the foreign 
market, some exporters won’t sell as much as them in the domestic market. We 
mention that the qualitative features of firm birth, growth, export market entry 
and exit, and death are all captured in this model. Simultaneously, reduction in 
sunk costs as opposed to overhead costs matters for a firm’s selection and per-
sistence in export status is shown. Specifically, by reducing sunk costs of export 
entry, trade liberalization reduces a firm’s export status persistence, while by re-
ducing costs of overhead export, the opposite happens when liberalization takes 
place. Regarding more research papers about this topic, one can refer to Campa 
[17], Murto [18], Jellal [19], Bayer [20], Miller [21], Kwon [22] and the refer-
ences therein. 

In the end, we mention that the problem we study in this paper has various 
applications in many aspects. One potential application, for instance, appears in 
the area of valuating off-shore petroleum leases, and specially in pricing the right 
to exploit an oilfield with given reserves. And the other application occurs in the 
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field of valuating “know-how”. Further, by modifying the model framework 
slightly, one can apply to the analysis of decisions to buy or scrap a durable con-
sumption good, to hire or fire labor and so forth. In view of this point, we will 
use the analysis of decisions to study a modified model that differs from the pre-
vious literatures. 

The contribution of this paper is that we make a generalization to previous 
papers such as Dixit and Tsekrekos, which are two standard model to study en-
try and exit decisions under uncertainty. The difference between ours and theirs 
is that we depict uncertainty by Heston-GBM, rather than conventional GBM or 
MR. In other words, we replace constant volatility in their settings by allowing 
volatility process itself to be stochastic. More specifically, we assume the instan-
taneous variance in the price follows a Cox-Ingersoll-Ross process, which is of-
ten referred to as Heston stochastic volatility in the theory of option pricing un-
der stochastic volatility. Nevertheless, our improvements are not just by using 
complicated and profound mathematical knowledge to examine or repeat one 
commonplace topic. The study shows that the extension and generalization have 
theoretical significance and application value as well. What’s more important, 
the results we obtained are not only consistent with our anticipation, but also in 
line with some economic phenomena in reality, and further can make new in-
terpretations to them from different perspective. Of course, the problem pre-
sented in this paper is still an open topic, so far to our knowledge. 

The remainder of this paper is organized as follows. We first introduce the 
model at length in Section 2. Then in Section 3, we solve and analyze the model. 
Subsequently, we illustrate numerical simulations in Section 4. Lastly, Section 5 
concludes the results. 

2. Model Setup 

In this section, we will introduce our model in detail for the sake of intactness 
though it is an extension to the standard models to study entry and exit deci-
sions under uncertainty, which proposed by Dixit and Tsekrekos. 

A firm possesses an exclusive production technology and consider to enter 
some market by making a fixed scale investment of one lump sum entry cost 1c . 
Once the firm become active in the market, then it can produce a unit flow of 
output at variable cost v. Alternatively, the firm can choose to suspend opera-
tions at any point by spending one lump sum exit cost 2c . Certainly, it must 
incur the entry cost 1c  again should it decide to reenter at some future time. In 
addition, we denote by r the risk-free interest rate or discount rate. By the way, 

1c , 2c , v and r are all constant and positive variables. 
The uncertainty originates from the output price P, which evolves exogenous-

ly to the firm. Namely, the firm is a price-taker. Unlike Dixit and Tsekrekos 
suppose the price P therein follows classical GBM or MR process, we suppose 
the price P herein follows a Heston-GBM process. According to Heston [23], the 
Heston-GBM process can be depicted as  
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( ) ( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( )*

d d d ,

d d d ,

P t P t t Q t P t W t

Q t q Q t t Q t Z t

µ

α β

 = +


= − +

 

Here, µ  is the drift rate of price process ( )P t , α  is the mean reverting 
rate, β  is the volatility, *q  is the long-run mean level of variance process 
( )Q t , ( )W t  and ( )Z t  are two correlated standard Brownian motions with 

correlation coefficient ρ . Besides, * 22 qα β>  is required to make ( )Q t  strictly 
positive, and rµ <  is needed to guarantee convergence. 

The firm is assumed to be risk-neutral as well as competitive, and its objective 
is to maximize the expected net present value. Clearly, its strategy problem has 
three state variables, one is the current price P, one is current variance Q, and 
the other is a discrete variable that indicates the firm is active or inactive. This 
setting, in some sense, corresponding to the firm possess a call-option to enter 
the market when it is inactive, and a put-option to exit when it is active. The two 
options must be valued at the same time because they are interlinked by exercis-
ing one the firm acquires the other. 

Again, we emphasize that suppose the price follows Heston-GBM not to just 
apply complicated and profound mathematical knowledge to make the frame-
work hard to understand, but because the following reasons such as: 1) Stochas-
tic volatility, for one thing, can explain many empirical findings like “Volatility 
Clusters” observed in financial markets, and for another thing, can replicate the 
observed “Volatility Smile” and thereby is essential for pricing and hedging fi-
nancial derivatives; 2) In the form of implied volatility, further proof shows that 
constant volatility hypothesis in Black-Scholes framework is not realistic; 3) The 
necessity of including stochastic volatility into a real option model is strongly 
indicated by commercial property literature; 4) Whenever changes in surround-
ing economic environment affect the level of fluctuations in project value, then 
stochastic volatility will undoubtedly be relevant for the timing of investment 
project; 5) So far as we know, the issue of entry and exit strategies under uncer-
tainty has not been referred in stochastic volatility setting. 

As we mentioned, the risk neutral and competitive firm has two discrete states, 
idle or active. When the firm’s state is idle, then it decides whether to keep idle 
or to enter. Likewise, when the firm’s state is active, then it decides whether to 
keep active or to exit. Thus, the decision problem of the firm is to switch opti-
mally from one state to the other state. For explicitness, we denote by ( )0 ,V P Q  
and ( )1 ,V P Q  respectively the expected net present value of the firm with initial 
price P as well as variance Q in the idle and in the active state, and follows op-
timal entry-exit strategies. In the sequel, we will construct the Heston-GBM model 
at length. 

Entry Problem. We assume an idle firm starts at time 0 with current price P 
as well as variance Q, and choose to enter into the market at time t. Then it must 
pays one lump-sum entry cost 1c , and further its value switches to  

( ) ( )( )1 ,V P t Q t . Therefore  
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( ) ( ) ( )( )( ) ( ){ }0 1 1, sup , exp ,V P Q E V P t Q t c rt= − −  

where E is the symbol of expectation operator. 
We point that if the idle firm keeps its state, then it will not has any other 

profit besides its expected capital gain ( )0d , dE V P Q t , which must be equal to 
( )0 ,rV P Q . According to Heston [23], it’s not difficult to demonstrate that 
( )0 ,V P Q  satisfies the following partial differential equation (Hereafter PDE) 

( )
2 2 2

2 2 *0 0 0 0 0
02 2

1 1 0,
2 2

V V V V V
QP PQ Q P q Q rV

P Q P QP Q
ρβ β µ α

∂ ∂ ∂ ∂ ∂
+ + + + − − =

∂ ∂ ∂ ∂∂ ∂
(1) 

with boundary condition 

( ) ( )0 , 0, 0,V P Q P t= →                     (2) 

and value-matching condition 

( ) ( )0 1 1, , ,H HV P Q V P Q c= −                     (3) 

smooth-pasting condition 

( ) ( )0 1, ,
.

H HP P P P

V P Q V P Q
P P

= =

∂ ∂
=

∂ ∂
                 (4) 

Here, HP  is a trigger price such that staying idle is optimal on an interval to 
its left side (i.e. HP P< ) while becoming active is optimal on an interval to its 
right side (i.e. HP P> ). Notice that boundary condition (2) ensures that an idle 
firm’s entry to a market will be worthless as output price becomes very small. 

Exit Problem. We assume an active firm starts at time 0 with current price P 
as well as variance Q, and choose to exit from the market at time t. Then it must 
pays one lump-sum exit cost 2c  and has a cash flow of ( )P s v−  for any in-
stant s t< , and its value switches to ( ) ( )( )0 ,V P t Q t  at time t. Therefore 

( ) ( )( ) ( ) ( ) ( )( ) ( ){ }1 00
, sup exp d , exp .

t
V P Q E P s v rs s V P t Q t rt= − − + −∫  

Similar to the computation of Equation (1), there yields the following PDE  

( )

2 2 2
2 21 1 1 1

2 2

* 1
1

1 1
2 2

,

V V V VQP PQ Q P
P Q PP Q

Vq Q rV v P
Q

ρβ β µ

α

∂ ∂ ∂ ∂
+ + +

∂ ∂ ∂∂ ∂
∂

+ − − = −
∂

           (5) 

with boundary condition  

( ) ( )( ) ( ) ( )1 0
, exp d , ,P vV P Q E P s v rs s P t

r rµ
+∞

= − − = − →∞
−∫       (6) 

and value-matching condition 

( ) ( )1 0 2, , ,L LV P Q V P Q c= −                      (7) 

smooth-pasting condition  
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( ) ( )1 0, ,
.

L LP P P P

V P Q V P Q
P P

= =

∂ ∂
=

∂ ∂
                  (8) 

Here, LP  is another trigger price such that keeping active is optimal on an 
interval to its right side (i.e. LP P> ) while becoming idle is optimal on an in-
terval to its left side (i.e. LP P< ). Notice that boundary condition (6) implies 
that an active firm’s exit from a market will be worthless as output price becomes 
very high, and at the same time guarantees that firm’s value converges to the ex-
pected net present value of operating in the market forever, come what may, 
starting from an initial price P. That is, it rules out explosive growth of firm’s 
value with high output price. 

Remark 1. As proposed in Dixit’s, HP  is the trigger price for entry while 

LP  is the trigger price for exit, and L HP P< . Put differently, an idle firm will 
enter into the market if HP P> , and an active firm will exit from the market if 

LP P< . However, if the price locates between LP  and HP , then for the active 
firm, it’s optimal to keep production activity, but for the idle firm, it’s optimal to 
continue being inactive. 

3. Model Analysis 

Now, we try to solve the two PDEs shown in (1)-(2) and (5)-(6), respectively. 
For our purpose, we rewrite PDE (1) into compact form as  

0 1 2 0
1 1 0,L L L V
ω ω
 

+ + = 
 

 

where 

( )
2 2

*
0 * 2 ,QL q Q

Qq Q
λ ∂ ∂

= + −
∂∂

 

2

1 *

2 ,L PQ
P Qq

ρλ ∂
=

∂ ∂
 

2
2

2 2

1 ,
2

L QP P r
PP

µ∂ ∂
= + −

∂∂
 

*1 , 2 .qω α λ β α= =  

Then we can expand ( )0 ,V P Q  as 

( ) ( ) ( ) ( ) ( )0 0 1 2 3, , , , , .V P Q P Q P Q P Q P Qω ω ω ω= + + + +     

Keeping terms up to ω , then the compact form of PDE (1) can be changed 
into 

( ) ( ) ( )0 0 0 1 1 0 0 2 1 1 2 0 0 3 1 2 2 1
1 1 0.L L L L L L L L Lω
ω ω

+ + + + + + + + =          

To determine functions 0 1 2 3, , ,    , we next equate various order of ω . 
Adopting the approaches presented in Ting et al. [24], and proceeding step by 

step with slight modification, we get the asymptotic solutions of ( )0 ,V P Q  and 
( )1 ,V P Q  are 
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( ) ( )
1 1

0 1 1
1

, 1 log ,
1

m m vV P Q A P M
m P

   ≈ +    −   
              (9) 

( ) ( )
2 2

1 2 2
2

, 1 log ,
1

m m v P vV P Q A P M
m P r rµ

   ≈ + + −   − −   
        (10) 

since ( )*
1 , P vV P Q

r rµ
= −

−
 is a special solution for PDE (5). Here 1A  and 2A  

are two undetermined parameters, and  

( )
( )

( )
( )

2 2
1 1 2 2

1 2
1 2 2 1

1 1
, ,

m m m m
M M

m m m m
βρ βρ
α α

− −
= =

− −
          (11) 

2 2

1 2* * * * * *

1 1 2 1 1 2, ,
2 2 2 2

r rm m
q q q q q q
µ µ µ µ   

= − + − + = − − − +   
   

  (12) 

which are the two roots of quadratic equation  

( ) 2
* *

2 2: 1 0.rm m m
q q
µϕ

 
= + − − = 

 
 

Remark 2. The argument processes of solutions ( )0 ,V P Q  and ( )1 ,V P Q  are 
very similar to Ting et al. [24], thus we leave out the details for the sake of avoiding 
wordiness. Besides, 1 1m >  and 2 0m <  due to ( ) ( )1 0, 0 0ϕ ϕ< <  and the con-
vexity of ( )mϕ , which guarantee the two boundary conditions (2) and (6) for 
PDEs (1) and (5), respectively. 

Remark 3. The solution ( )0 ,V P Q  must be non-negative in order to possess 
economic meanings, so 1 0A ≥ . Similarly, 2 0A ≥  because the yields of an ac-
tive firm from the optimal strategy should equal to or more than the expected  

value of P v
r rµ

−
−

 from the feasible strategy of operating forever. 

Recalling value-matching condition and smooth-pasting condition (3)-(4) for 
( )0 ,V P Q  and (5)-(6) for ( )1 ,V P Q , we have  

( )

( )

1

2

1
1 1

1

2
2 2 1

2

1 log
1

1 log ,
1

m
H

H

m H
H

H

m vA P M
m P

m v P vA P M c
m P r rµ

   +    −   
   = + + − −   − −   

          (13) 

( )

( )

1 1

2 2

1 11
1 1 1 1 1

1

1 1 2
2 2 2 2 2

2

1 log
1

1 1 log ,
1

m m
H H

H

m m
H H

H

m vA m P M A M P
m P

m vA M P A m P M
r m Pµ

− −

− −

   + −   −   
   = − + +    − −   

      (14) 

( )

( )

1

2

1
1 1

1

2
2 2 2

2

1 log
1

1 log ,
1

m
L

L

m L
L

L

m vA P M
m P

m v P vA P M c
m P r rµ

   +    −   
   = + + − +   − −   

         (15) 
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1 1 log .
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m m
L L

L

m m
L L

L

m vA m P M A M P
m P

m vA M P A m P M
r m Pµ

− −

− −

   + −   −   
   = − + +    − −   

      (16) 

Obviously, 1A  and 2A , HP  and LP  are determined by Equations (13)-(16). 
However, it’s difficult to derive the expressions of trigger prices HP  and LP  
because all equations with respect to them are transcendental equations. Thus, we 
need to make some qualitative analysis to obtain some important properties of 
them. Such as neither HP  goes to infinity nor LP  goes to infinitesimal, because 
the exit of an active firm is worthless when the output price rises to HP , and the 
entry of an idle firm is worthless when the output price falls to LP . Further, to 
this end, we claim that 2A  goes to zero in (13)-(14) if the exit cost goes to in-
finity and 1A  goes to zero in (15)-(16) if the entry cost goes to infinity. Then we 
get  

( )
( )

1 1
1

1 11
1

1 ,
1 log

1
H

H

M v rcm
rPm v v rcM rm P µ

+
− − =

  − ++    −− 

         (17) 

( )
( )

2 2
2

2 22
2

1 .
1 log

1
L

L

M v rcm
rPm v v rcM rm P µ

−
− − =

  − −+    −− 

         (18) 

Although the analytical expressions of the two trigger prices cannot be derived 
from Equations (17) and (18), we can verify that there holds 1 :H HP v rc M> + = , 

2 :L LP v rc M< − = , where HM , LM  are the Marshallian trigger prices, by em-
ploying the method presented in Dixit’s with slight modification. This means 
uncertainty from volatility widens Marshallian range ( ),L HM M  of inaction. 
Particularly, if 2c v r≥ , then 0LP < , thus the active firm will never exit from 
the market. As to more analytical properties, we refer to the numerical simula-
tions in the subsequent section. 

Remark 4. When the variance process ( )Q t  is constant, and set to be 2σ . 
Then * 2q σ= , and 0β = . Under this condition, our Heston-GBM model in 
this paper collapse into the GBM model in Dixit’s. And it’s not difficult to verify 
that the trigger prices ,H LP P  in Equations (17)-(18) can be solved as the same 
as Dixit [2]. 

4. Numerical Simulation 

In this section, we investigate the analytical properties for trigger prices by nu-
merical simulation. Specifically, we focus on the effects of the drift rate µ  of 
price process ( )P t , the mean reverting rate α , the long-run mean level *q  
and the volatility β  of variance process ( )Q t  on the trigger prices HP  and 

LP , respectively. For our purpose, 1 2c = , 2 1c = , 4v =  and 0.08r =  are 
predetermined. In the sequel, we demonstrate our numerical results one after 
one from Tables 1-4. 
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From Table 1, it’s easy to see that both HP  and LP  are decreasing with µ , 
for any [ ]1,1ρ ∈ − . That is, the drift rate of the price process has negative effects 
on the trigger prices. The intuition is that a firm will enter the market at a lower 
threshold if it expects a favorable price trend, and once enters in, it’s more will-
ing to hang on even if a temporarily adverse price appears. Notice that the trig-
ger prices illustrated in the case 0ρ =  are actually equivalent to which derived 
directly from Dixit’s GBM model because 1 2,M M  are both equal to zero and 
the trigger prices ,H LP P  expressed in Equations (17)-(18) can be solved expli-
citly as the same as Dixit’s. By simple computation, we find that for every fixed 
ρ  such as 1, 0, or −0.5, the width of the range of inaction, namely the difference 
between HP  and LP , is decreasing with the drift rate µ  of price process. That 
is, the drift rate of price process has negative effects on width of the inaction 
range no matter for GBM model with constant volatility or for Heston-GBM 
model with stochastic volatility. 
 
Table 1. The effects of drift rate of price process on trigger prices. 

 

6α = , 0.3β = , * 0.1q =  

1ρ =  0ρ =  0.5ρ = −  

HP  LP  HP  LP  HP  LP  

0.02µ =  8.5891 1.4978 8.3202 1.4700 8.1590 1.4558 

0.03µ =  8.2522 1.2987 8.0099 1.2725 7.8964 1.2583 

0.04µ =  7.9342 1.0800 7.7184 1.0563 7.6163 1.0440 

0.05µ =  7.6418 0.8408 7.4489 0.8210 7.3570 0.8105 

0.06µ =  7.3660 0.5810 7.1975 0.5763 7.1148 0.5685 

 
Following Table 2, we know that an increase in α  reduces the trigger prices 

in the case 0ρ > , but raises the trigger prices in the case 0ρ < . That is, the 
mean revering rate of variance process has negative effects on trigger prices 
when 0ρ > , but has positive effects on trigger prices when 0ρ < . The logic is 
that the larger the mean reverting rate of variance process, the shorter the time 
that the stochastic variance of price process keeps far away from the long-run 
mean level. This means that the price neither stays at a very high level nor at a 
very low level for a long time. Thus, when 0ρ > , the idle firm would reduce 
entry price in order to enter the market while the active firm would reduce exit 
price in order not to exit from the market for pursuing gain; when 0ρ < , the 
idle firm would raise entry price in order not to enter the market while the active 
firm would raise exit price in order to exit from the market for preventing loss. 
In addition, we can check that the width of the range of inaction is decreasing 
(increasing) with the mean reverting rate of variance process in the case 0ρ >  
( 0ρ < ). Regarding the case 0ρ = , it’s unsurprising to see the trigger prices do 
not change with the mean reverting rate of variance process and so does the 
width of the inaction range. This is because the trigger prices derived in the case 

0ρ =  are independent of the mean reverting rate of variance process. 
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Table 2. The effects of mean reverting rate of variance process on trigger prices. 

 

0.04µ = , 0.3β = , * 0.1q =  

1ρ =  0ρ =  0.5ρ = −  

HP  LP  HP  LP  HP  LP  

2α =  8.4215 1.1238 7.7184 1.0563 7.4229 1.0183 

4α =  8.0484 1.0914 7.7184 1.0563 7.5667 1.0377 

6α =  7.9342 1.0800 7.7184 1.0563 7.6163 1.0440 

8α =  7.8787 1.0742 7.7184 1.0563 7.6415 1.0471 

10α =  7.8466 1.0707 7.7184 1.0563 7.6564 1.0489 

 
In terms of Table 3, we see that the entry price is increasing, whereas the exit price 

is decreasing with the long-run mean level of variance process, for any [ ]1,1ρ ∈ − . 
The reason is that higher long-run mean level of variance process implies bigger 
stochastic volatility of price process, thus the idle firm will enter the market at a 
higher threshold, but the active firm will not exit from the market even though a 
suddenly adverse price emerges, which reflects the significance of hysteresis. We 
mention that the result is in line with Dixit’s as well as Tsekrekos’s, and thereby, 
the finding is robust no matter the volatility of price process is constant or sto-
chastic. Similarly, we point that for any constant ρ , the long-run mean level of 
variance process broadens the width of the range of inaction regardless the frame-
work is GBM and MR with constant volatility or is Heston-GBM with stochastic 
volatility. 

 
Table 3. The effects of long-run mean level of variance process on trigger prices. 

 

0.04µ = , 6α = , 0.3β =  

1ρ =  0ρ =  0.5ρ = −  

HP  LP  HP  LP  HP  LP  

* 0.08q =  7.2852 1.1759 7.1017 1.1481 7.0148 1.1335 

* 0.09q =  7.6134 1.1255 7.4133 1.0999 7.3180 1.0866 

* 0.10q =  7.9342 1.0800 7.7184 1.0563 7.6163 1.0440 

* 0.11q =  8.2521 1.0386 8.0212 1.0165 7.9112 1.0051 

* 0.12q =  8.5678 1.0006 8.3206 0.9800 8.2030 0.9694 

 
According to Table 4, we know that an increase in β  raises the trigger prices 

in the case 0ρ > , but reduces the trigger prices in the case 0ρ < . That is, the 
volatility of variance process has positive effects on trigger prices when 0ρ > , 
but has negative effects on trigger prices when 0ρ < . The sense is that larger 
volatility of variance process induces indirectly larger volatility of price process 
when 0ρ >  while smaller volatility of price process when 0ρ < . Therefore, in 
the case 0ρ > , with the increasing of the volatility of variance process, the idle 
firm will raise the entry threshold to enter the market discreetly, and the active 
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firm will raise the exit threshold to prevent exiting from the market easily. While 
in the case 0ρ < , the opposite result occurs. Besides, we can verify that the width 
of the range of inaction is increasing(decreasing) with the volatility of variance 
process in the case 0ρ >  ( 0ρ < ). Analogously, regarding the case 0ρ = , it’s 
expectable to see the trigger prices do not vary with the volatility of variance 
process and so does the width of the inaction range. This is also because the trigger 
prices derived in the case 0ρ =  do not dependent on the volatility of variance 
process. Further, that is why the trigger prices illustrated in Table 2 and Table 4 
are the same under the condition 0ρ =  with the same drift rate of price process 
and long-run mean level of variance process. 

 
Table 4. The effects of volatility of variance process on trigger prices. 

 

0.04µ = , 6α = , * 0.1q =  

1ρ =  0ρ =  0.5ρ = −  

HP  LP  HP  LP  HP  LP  

0.1β =  7.7880 1.0644 7.7184 1.0563 7.6834 1.0523 

0.2β =  7.8610 1.0722 7.7184 1.0563 7.6504 1.0481 

0.3β =  7.9342 1.0800 7.7184 1.0563 7.6163 1.0440 

0.4β =  8.0110 1.0876 7.7184 1.0563 7.5826 1.0398 

0.5β =  8.0881 1.0951 7.7184 1.0563 7.5494 1.0356 

 
Finally, throughout Tables 1-4, it’s not difficult to find two common places, 

no matter for GBM model with constant volatility or for Heston-GBM model with 
stochastic volatility. The one is our numerical results confirmed that uncertainty 
would widen Marshallian range of inaction, namely ( ) ( ), ,L H L HP P M M⊃  (Un-
der our assumption, 3.92, 4.16L HM M= = ). The other one is the trigger prices 
and the width of inaction range from Heston-GBM model with stochastic vola-
tility are relatively bigger when 0ρ >  while are relatively smaller when 0ρ < , 
comparing to the counterparts from GBM model with constant volatility and for 
each given drift rate of price process, or mean reverting rate, or long-run mean 
level, or volatility of variance process. Put differently, relative to constant volatil-
ity, stochastic volatility has significantly positive or negative effects on the trigger 
prices and the width of inaction range, which depends on the correlation of the 
two Brownian motions in price process and variance process, respectively. 

5. Conclusions 

In the past decades, many investment decisions of firms such as when to invest 
in an emerging market or whether to expand the capacity have been studied by 
many researches, which involve irreversible investment and uncertainty about 
demand, cost or competition, etc. Naturally, considerable results and conclusions 
have been achieved. In spite of this, there still exist some issues that can be stu-
died further. In view of this point, a model of optimal inertia in investment deci-
sions under uncertainty with stochastic volatility is established in this paper to 

https://doi.org/10.4236/jmf.2020.101011


J. W. Huang 
 

 

DOI: 10.4236/jmf.2020.101011 170 Journal of Mathematical Finance 
 

deepen understanding of the issue and open up the way for treating further prob-
lems of this topic. 

Unsurprisingly, our conclusions show that stochastic volatility undoubtedly be 
relevant for the timing of investment decisions. For Heston-GBM model, as dem-
onstrated in the previous section, the change of the drift rate of price process plays 
negative role in trigger prices for any given [ ]1,1ρ ∈ − . For any fixed [ ]1,1ρ ∈ − , 
the effects of the long-run mean level of variance process on entry price are posi-
tive, whereas the effects on exit price are negative. We mention that the two find-
ings above are robust no matter the volatility is constant or stochastic. The change 
of mean reverting rate of variance process has negative impacts on trigger prices 
when 0ρ > , while the change has positive impacts on trigger prices when 0ρ < . 
On the contrary, the effects of the volatility of variance process on trigger prices 
are positive when 0ρ > , while the effects are negative when 0ρ < . Comparing 
to trigger prices derived from GBM model with constant volatility, which are 
those illustrated in the case 0ρ = , the counterparts derived from Heston-GBM 
model with stochastic volatility are greater in the case 0ρ >  but smaller in the 
case 0ρ < . Namely, stochastic volatility has significantly positive or negative 
influence on trigger prices, relative to constant volatility. What’s more important, 
no matter the volatility is constant or stochastic, the uncertainty would widen the 
Marshallian range of inaction. 

The major contribution of this paper is that we study a classical and hot topic 
from a new perspective. Unlike previous literatures, we here construct one sto-
chastic volatility models, Heston-GBM, to study firm’s entry and exit strategy 
under uncertainty. The findings show that stochastic volatility has potent and 
significant impacts on firm’s investment decisions, which implies that we replace 
constant volatility by stochastic volatility not to apply profound mathematical 
knowledge to make the problem complicated, but to say the conventional GBM 
and MR process is not always the most appropriate for some economic variables. 
Indeed, relatively speaking, stochastic volatility models are able to capture the so 
called “Leverage Effect”. In brief, our extension not only has theoretical signi-
ficance, but also has application value. 
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