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Abstract 
We extend the binary options into barrier binary options and discuss the ap-
plication of the optimal structure without a smooth-fit condition in the op-
tion pricing. We first review the existing work for the knock-in options and 
present the main results from the literature. Then we show that the price 
function of a knock-in American binary option can be expressed in terms of 
the price functions of simple barrier options and American options. For the 
knock-out binary options, the smooth-fit property does not hold when we 
apply the local time-space formula on curves. By the properties of Brownian 
motion and convergence theorems, we show how to calculate the expectation 
of the local time. In the financial analysis, we briefly compare the values of 
the American and European barrier binary options.  
 

Keywords 
Binary Option, Barrier Option, Arbitrage-Free Price, Optimal Stopping, 
Geometric Brownian Motion, Parabolic Free Boundary Problem 

 

1. Introduction 

Barrier options on stocks have been traded in the OTC (Over-The-Counter) 
market for more than four decades. The inexpensive price of barrier options 
compared with other exotic options has contributed to their extensive use by in-
vestors in managing risks related to commodities, FX (Foreign Exchange) and 
interest rate exposures. 

Barrier options have the ordinary call or put pay-offs but the pay-offs are con-
tingent on a second event. Standard calls and puts have pay-offs that depend on 
one market level: the strike price. Barrier options depend on two market levels: 
the strike and the barrier. Barrier options come in two types: in options and out 
options. An in option or knock-in option only pays off when the option is in the 
money with the barrier crossed before the maturity. When the stock price 
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crosses the barrier, the barrier option knocks in and becomes a regular option. If 
the stock price never passes the barrier, the option is worthless no matter it is in 
the money or not. An out barrier option or knock-out option pays off only if the 
option is in the money and the barrier is never being crossed in the time hori-
zon. As long as the barrier is not being reached, the option remains a vanilla ver-
sion. However, once the barrier is touched, the option becomes worthless imme-
diately. More details about the barrier options are introduced in [1] and [2]. 

The use of barrier options, binary options, and other path-dependent options 
has increased dramatically in recent years especially by large financial institu-
tions for the purpose of hedging, investment and risk management. The pricing 
of European knock-in options in closed-form formulae has been addressed in a 
range of literature (see [3] [4] [5] and reference therein). There are two types of 
the knock-in option: up-and-in and down-and-in. Any up-and-in call with strike 
above the barrier is equal to a standard call option since all stock movements 
leading to pay-offs are knock-in naturally. Similarly, any down-and-in put with 
strike below the barrier is worth the same as a standard put option. An investor 
would buy knock-in option if he believes the movements of the asset price are 
rather volatile. Rubinstein and Reiner [6] provided closed form formulas for a 
wide variety of single barrier options. Kunitomo and Ikeda [7] derived explicit 
probability formula for European double barrier options with curved boundaries 
as the sum of infinite series. Geman and Yor [8] applied a probabilistic approach 
to derive the Laplace transform of the double barrier option price. Haug [9] has 
presented analytic valuation formulas for American up-and-input and down-and-in 
call options in terms of standard American options. It was extended by Dai and 
Kwok [10] to more types of American knock-in options in terms of integral re-
presentations. Jun and Ku [11] derived a closed-form valuation formula for a digit 
barrier option with exponential random time and provided analytic valuation for-
mulas of American partial barrier options in [12]. Hui [13] used the Black-Scholes 
environment and derived the analytical solution for knock-out binary option 
values. Gao, Huang and Subrahmanyam [14] proposed an early exercise premium 
presentation for the American knock-out calls and puts in terms of the optimal 
free boundary. 

There are many different types of barrier binary options. It depends on: 1) in 
or out; 2) up or down; 3) call or put; 4) cash-or-nothing or asset-or-nothing. The 
European valuation was published by Rubinstein and Reiner [6]. However, the 
American version is not the combination of these options. This paper considers 
a wide variety of American barrier binary options and is organised as follows. In 
Section 2 we introduce and set the notation of the barrier binary problem. In 
Section 3 we formulate the knock-in binary options and briefly review the exist-
ing work on knock-in options. In Section 4 we formulate the knock-out binary 
option problem and give the value in the form of the early exercise premium re-
presentation with a local time term. We conduct a financial analysis in Section 5 
and discuss the application of the barrier binary options in the current financial 
market. 
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2. Preliminaries 

American feature entitles the option buyer the right to exercise early. Regardless 
of the pay-off structure (cash-or-nothing and asset-or-nothing), for a binary call 
option there are four basic types combined with barrier feature: up-in, up-out, 
down-in and down-out. Consider an American (also known as “One-touch”) up-in 
binary call. The value is worth the same as a standard binary call if the barrier is 
below the strike since it naturally knocks-in to get the pay-off. On the other hand, 
if the barrier is above the strike, the valuation turns into the same form of the 
standard with the strike price replaced by the barrier since we cannot exercise if 
we just pass the strike and we will immediately stop if the option is knocked-in. 
Now let us consider an up-out call. Evidently, it is worthless for an up-out call if 
the barrier is below the strike. Meanwhile, if the barrier is higher than the strike 
the stock will not hit it since it stops once it reaches the strike. For these reasons, 
it is more mathematically interesting to discuss the down-in or down-out call 
and up-in or up-output. 

Before introducing the American barrier binary options, we give a brief in-
troduction of European barrier binary options and some settings for this new 
kind of option. 

Figure 1 and Figure 2 show the value of eight kinds of European barrier bi-
nary options and the comparisons with corresponding binary option values. All 
of the European barrier binary option valuations are detailed in [6]. Note that 
the payment is binary, therefore it is not an ideal hedging instrument so we do 
not analyse the Greeks in this paper and more applications of such options in 
financial market will be addressed in Section 5. Since we will study the Ameri-
can-style options, we only consider the cases that barrier below the strike for the 
call and barrier above the strike for the put as reasons stated above. As we can 
see in Figure 1 and Figure 2, the barrier-version options in the blue or red 
curves are always worth less than the corresponding vanilla option prices. For 
the binary call option in Figure 1 when the asset price is below the in-barrier, 
the knock-in value is same as the standard price and the knock-out value is 
worthless. When the stock price goes very high, the effect of the barrier is in-
tangible. The knock-intends to worth zero and the knock-out value converges to 
the knock-less value. On the other hand in Panel (a) of Figure 2, the value of the 
binary put decreases with an increasing stock price. As Panel (b) in Figure 2 
shows, the asset-or-nothing put option value first increases and then decreases 
as stock price going large. At a lower stock price, the effect of the barrier for the 
knock-out value is trifle and the knock-in value tends to be zero. When the stock 
price is above the barrier, the knock-out is worthless and the up-in value gets the 
peak at the barrier. The figures also indicate the relationship  

knock-out knock-in knock-less.+ =                (2.1) 

Above all, barrier options create opportunities for investors with lower pre-
miums than standard options with the same strike. 
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Figure 1. A computer comparison of the values of the European barrier cash-or-nothing 
call(CNC) and asset-or-nothing call(ANC) options for t given and fixed. 
 

 
Figure 2. A computer comparison of the values of the European barrier cash-or-nothing 
put (CNP) and asset-or-nothing put (ANP) options for t given and fixed. 
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3. The American Knock-In Binary Option 

We start from the cash-or-nothing option. There are four types for the cash-or- 
nothing option: up-and-in call, down-and-in call, up-and-input and down-and- 
input. For the up-and-in call, if the barrier is below the strike the option is worth 
the same as the American cash-or-nothing call since it will cross the barrier si-
multaneously to get the pay-off. On the other hand, if the barrier is above the 
strike the value of the option turns into the American cash-or-nothing call with 
the strike replaced by the barrier level. Mathematically, the most interesting part 
of the cash-or-nothing call option is down-and-in call (also known as a down- 
and-up option). For the reason stated above, we only discuss up-and-input and 
down-and-in call in this section. 

We assume that the up-in trigger clause entitles the option holder to receive a 
digital put option when the stock price crosses the barrier level. 

1) Consider the stock price X evolving as  

d d dt t t tX rX t X Wσ= +                    (3.1) 

with 0X x=  under P for any interest rate 0r >  and volatility 0σ > . Through-
out ( ) 0t tW W

≥
=  denotes the standard Brownian motion on a probability space 

( ), ,PΩ  . The arbitrage-free price of the American cash-or-nothing knock-in 
put option at time [ ]0,t T∈  is given by  

( ) ( ) ( )
0

, E e I I ,sup r
t t

T t
V t x X K M Lτ

τ τ
τ

−
+ +

≤ ≤ −
 = ≤ ≥          (3.2) 

where K is the strike price, L is the barrier level and 0maxt s t tM X≤ ≤=  is the 
maximum of the stock price process X. Recall that the unique strong solution for 
(3.1) is given by  

( )( )2exp 2t s sX x W r sσ σ+ = + −               (3.3) 

under ,Pt x . The process X is strong Markov with the infinitesimal generator 
given by  

2 2
2

2 .
2X rx x

x x
σ∂ ∂

= +
∂ ∂

                    (3.4) 

We introduce a new process ( ) 0
L L

t t
X X

≥
=  which represents the process X 

stopped once it hits the barrier level L. Define ( )
0L

L
t t t

X X τ∧ ≥
= , where Lτ  is the 

first hitting time of the barrier L as  

{ }inf 0 : .L tt X Lτ = ≥ ≥                    (3.5) 

It means that we do not need to monitor the maximum process  
( ) 00 max t T ttM X≤ ≤≥

=  since the process L
tX  behaves exactly the same as the 

process X for any time Lt τ<  and most of the properties of X follow naturally 
for L

tX . 
2) Standard Markovian arguments lead to the following free-boundary problem  

int XV rV C+ =                      (3.6) 

( ) ( ), I for orV t x x K x K t T= ≤ = =                 (3.7) 
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( ) ( ), I inV t x x K C> ≤                      (3.8) 

( ) ( ), I inV t x x K D= ≤                      (3.9) 

( ) [ ), 0 for , ,V t x x L= ∈ ∞                    (3.10) 

where the continuation set is expressed as  

( ) [ ) ( ){ }, 0, 0, |C t x T x K= ∈ × ∞ >                 (3.11) 

and the stopping set is given by  

( ) [ ) ( ){ } ( ){ }, 0, 0, | , |D t x T x K T x x K= ∈ × ∞ ≤ >           (3.12) 

and the optimal stopping time is given by  

[ ]{ }inf 0, : .L
K tt T X Kτ = ∈ ≤                    (3.13) 

The proof is easy to attend by applying the definition of optimal stopping 
time. 

3) Summarising the preceding facts, we can now apply the approach used in 
[10] and [15] to obtain a representation for the price of the American knock-in 
binary option as follows:  

( ) ( ) ( )
( ) ( ) ( )

0

)

, e , d |

e , , d

T t rs
A L t

T r u t
At

V t x V t s L s X x

V u L f u t x u

τ
− −

− −

= + ∈ =

= −

∫

∫

P
           (3.14) 

for [ ]0,t T∈  and ( )0,x L∈ , where ( ),v f v x→  is the probability density 
function of the first hitting time of the process (3.1) to the level L. The density 
function is given by (see e.g. [16])  

( )
2

3 2
1 1, log log

2
L Lf v x r v
x v xv

σφ
σ σ

      = − −              
       (3.15) 

for [ )0,v T∈  and ( )0,x L∈ , where φ  is the standard normal density func-

tion given by ( ) 2 21 e
2

xxφ −=
π

 for x∈R . Therefore, the expression for the 

arbitrage-free price is given by (3.14) and can be solved by inserting the price of 
the American cash-or-nothing put option. 

The value of the American cash-or-nothing put option is given by [6] 

( )
( )( )

( )( )2

2

22

log 2
,

log 2
.

A

r

K r T tx xV t x
K T t

x r T tK K
x T t

σ

σ

σ

σ

σ

 − + −  = Φ   −   
 

 + + −  + Φ   −   
 

       (3.16) 

The other three types of binary options: cash-or-nothing call, asset-or-nothing 
call and put follow the same pricing procedure and their American values can be 
referred in [6]. 
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4. The American Knock-Out Binary Options 
4.1. The American Knock-Out Cash-Or-Nothing Options 

1) Consider the stock price X evolving as  

d d dt t t tX rX t X Wσ= +                      (4.1) 

with 0X x=  under P for any interest rate 0r >  and volatility 0σ > . Throughout 
( ) 0t tW W

≥
=  denotes the standard Brownian motion on a probability space 

( ), ,PΩ  . The arbitrage-free price of the American up-out cash-or-nothing put 
option at time [ ]0,t T∈  is given by  

( ) ( ) ( )
0

, E e I I ,sup r
t t

T t
V t x X K M Lτ

τ τ
τ

−
+ +

≤ ≤ −
 = ≤ ≤             (4.2) 

where K is the strike price, L is the barrier level and 0maxt s t tM X≤ ≤=  is the 
maximum of the stock price process X. Recall that the unique strong solution for 
(4.1) is given by 

( )( )2exp 2t s sX x W r sσ σ+ = + −                 (4.3) 

under ,Pt x . The process X is strong Markov with the infinitesimal generator 
given by  

2 2
2

2 .
2X rx x

x x
σ∂ ∂

= +
∂ ∂

                      (4.4) 

We introduce a new process ( ) 0
L L

t t
X X

≥
=  which represents the process X 

stopped once it hits the barrier level L. Define ( )
0L

L
t t t

X X τ∧ ≥
= , where Lτ  is the 

first hitting time of the barrier L:  

{ }inf 0 : .L tt X Lτ = ≥ ≥                      (4.5) 

It means that we do not need to monitor the maximum process  

( ) 00 max t T ttM X≤ ≤≥
=  since the process L

tX  behaves exactly the same as the 
process X for any time Lt τ<  and most of the properties of X follow naturally 

for L
tX . 

2) Let us determine the structure of the optimal stopping problem (4.2). Stan-
dard Markovian arguments lead to the following free-boundary problem (see 
[17])  

int XV rV C+ =                       (4.6) 

( ) ( ), I for orV t x x K x K t T= ≤ = =               (4.7) 

( ) ( ), I inV t x x K C> ≤                    (4.8) 

( ) ( ), I inV t x x K D= ≤                    (4.9) 

( ) [ ), 0 for , ,V t x x L= ∈ ∞                  (4.10) 

where the continuation set is expressed as  

( ) [ ) ( ){ }, 0, 0, | ,C t x T x K= ∈ × ∞ >               (4.11) 

the stopping set is given by  
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( ) [ ) ( ){ } ( ){ }, 0, 0, | , | ,D t x T x K T x x K= ∈ × ∞ ≤ >        (4.12) 

and the optimal stopping time is given by  

{ }inf 0 : L
K tt X Kτ = ≥ ≤                   (4.13) 

denoting the first time the stock price is equal to K before the stock price is equal 
to L. We will prove that K is the optimal boundary and Kτ  is optimal for (4.2) 
below. 

3) We will show that (4.13) is optimal for (4.2). The fact that the value func-
tion (4.2) is a discounted price indicates that the larger τ  is, the less value we 
will get. As to the payoff, it is either £1 or nothing. Therefore, the optimal stop-
ping time is just the very first time that the stock price hits K, which is (4.13). To 
prove this, we define τ  as any stopping time. We need to show that  

( ) ( )( ) ( ) ( )( ), ,e I I e I I .K
K K

r r
t x t t t x t tX K M L X K M Lτ τ

τ τ τ τ
− −

+ + + +≤ ≤ ≥ ≤ ≤  (4.14) 

Actually, 

( ) ( )( )
( ) ( ) ( )(

( ) ( ) ( ))
( ) ( ) ( ) ( )( )
( )( )

*

,

,

,

,

e I I

e I I I

e I I I

e I I I e I

e I .

K
K K

K
K

K
K K

K K
K K

K

r
t x t t

r
t x t t K

r
t t K

r r
t x t t K

r
t x K

X K M L

X K M L t T

X K M L t T

X K M L t T

t T

τ
τ τ

τ
τ τ

τ
τ τ

τ τ
τ τ

τ

τ

τ

τ

τ

−
+ +

−
+ +

−
+ +

− −
+ +

−

≤ ≤

= ≤ ≤ + <

+ ≤ ≤ + ≥

= ≤ ≤ + < + ∅

= + <









  (4.15) 

On the other hand, 

( ) ( )( )
( ) ( ) ( )(

( ) ( ) ( ))
( ) ( ) ( ) ( )( )

,

,

,

e I I

e I I I

e I I I

e I e I I I

r
t x t t

r
t x t t K

r
t t K

r r
t x t t K

X K M L

X K M L

X K M L

X K M L

τ
τ τ

τ
τ τ

τ
τ τ

τ τ
τ τ

τ τ

τ τ

τ τ

−
+ +

−
+ +

−
+ +

− −
+ +

≤ ≤

= ≤ ≤ <

+ ≤ ≤ ≥

= ∅ + ≤ ≤ ≥







 

( ) ( ) ( ) ( )(
( ) ( ) ( ) ( ))
( ) ( ) ( ) ( ) ( )( )
( )( )

,

,

,

e I I I I

e I I I I

e I I I I e I

e I .K

r
t x t t K K

r
t t K K

r r
t x t t K K

r
t x K

X K M L t T

X K M L t T

X K M L t T

t T

τ
τ τ

τ
τ τ

τ τ
τ τ

τ

τ τ τ

τ τ τ

τ τ τ

τ

−
+ +

−
+ +

− −
+ +

−

= ≤ ≤ ≥ + <

+ ≤ ≤ ≥ + ≥

= ≤ ≤ ≥ + < + ∅

≤ + <







 (4.16) 

Hence we conclude that Kτ  is optimal in (4.2). 
4) Based on the optimal stopping time (4.13), a direct solution for (4.2) can be 

expressed as  

( ) ( )
( )

,

,

, E e I , ,

E e I , .

K
K K

K
K

r
t x t t K

r
t x t K

V t x X K M L T t

M L T t

τ
τ τ

τ
τ

τ

τ

−
+ +

−
+

 = ≤ ≤ ≤ − 
 = ≤ ≤ − 

       (4.17) 

For the geometric Brownian motion the density ( )P , d
Kx KM L tτ τ≤ ∈  is known 

in closed form (cf. ([16], Page 622): 
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( )
( ) ( ) ( )

222

2

21 2
2

log log
P , d e , d

K

r tr

x K t
L x L KKM L t ss t

x

σσ
σ

τ τ
σ σ

−− −   ≤ ∈ =   
   

 (4.18) 

for K x L≤ ≤ , where ( ),tss x y  is given by (cf. [16])  

( )
( )22

2
3

2, e
2

y x ky
t

t
k

y x kyss x y
t

− +∞ −

=−∞

− +
=

π
∑               (4.19) 

for x y< . The result is straightforward  

( )
( ) ( ) ( )

( ) ( )( )

222

2

2

2

21 2
2

0 3

log 2 log

2

log 2 log
, e

2

e d

r sr
T t

j

x K j L K

s

x K j l KKV t x
x s

s

σσ
σ

σ

σ

+− ∞−−

=−∞

+
−

+ =  
  π

×

∑∫
   (4.20) 

for K x L≤ ≤ . The value function concerns with the convergence due to the sum 
of an infinite series. More precisely we will apply the optimal stopping theory to 
value (4.2) and get a better result. However, the result from (4.20) indicates some 
properties of the pricing (4.2). It is easy to verify that local time-space formula is 
applicable to our problem (4.2). 

5) To get the solution to the optimal stopping problem (4.2), apply Ito’s for-
mula to ( )e ,rs L

t sV t s X−
++  and get  

( ) ( ) ( )
( ) ( )( ) ( ) ( )
0

0

e , , e , d

1 , , I d ,
2

srs L ru L
t s t u s

s K
x x u uu u

V t s X V t x H t u X u M

V u X V u X X K X+ −

− −
+ ++ = + + +

+ − =

∫

∫ 

 (4.21) 

where the function ( ),H H t x=  is defined by  
2

2 ,
2

c
t x xxH V rxV x V rVµ σ

= + + −                 (4.22) 

K
u  is given by  

( )
00

1lim I d ,
2

uK
u r rK X K X X

ξ
ξ ξ

ξ↓
= − − < < +∫           (4.23) 

and d K
u  refers to integration with respect to the continuous increasing func-

tion K
uu →  , and ( )0

e , d
s ru L L

s u x t u uM X V t u X Wσ −
+= +∫  is a continuous local 

martingale for [ ]0,s T t∈ −  with [ )0,t T∈ . 
The martingale term vanishes when taking E on both sides. From the optional 

sampling theorem we get  

( ) ( ) ( )

( ) ( )

0

0

E e , , E e , d

1 E e , d
2

srs L ru L
t s u

s ru K
x u

V t s X V t x H t u xX u

V u K X

− −
+

− +

  + = + +    

+

∫

∫ 

     (4.24) 

for all stopping times τ  of X with values in [ ]0,T t−  with [ )0,t T∈  and 
( )0,x∈ ∞  given and fixed. Replacing s by T t−  in (4.24), we get  

( ) ( ) ( ) ( ) ( )
( ) ( )

, ,0

0

, e E e E , I d

1 E e , d
2

sr T t L ru L L
t x T t x u t u

s ru K
x u

V t x G X H t u xX X K u

V u K X

− − −
+

− +

 = − + ≤ 

−

∫

∫ 

 (4.25) 

for all ( ) [ ], 0,t x T +∈ × , where ( ) ( )G x I x K= ≤  and H r= −  for x K≤ . We 
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obtain the following early exercise premium representation of the value function  

( ) ( ) ( ) ( )
( ) ( )

, ,0

0

, e E e P d

1 E e , d .
2

T tr T t L ru L
t x T t x t u

T t ru K
x u

V t x G X r X K u

V t u K X

−− − −
+

− − +

= + ≤

− +

∫

∫ 

      (4.26) 

The first term on the RHS is the arbitrage-free price of the European knock-out 
cash-or-nothing put option EV  at the point ( ),t x  and can be written explicitly 
as (see [6])  

( ) ( ) ( ) ( )( )

( ) ( ) ( )( )2

2

2 2 21

log 2
, e

log 2
e .

r T t
E

r

r T t

K x r T t
V t x

T t

Kx L r T tL
x T t

σ

σ

σ

σ

σ

− −

−
− −

 − − −
 = Φ
 − 

 − − −   − Φ   −   

  (4.27) 

We write 

( ) ( ), 0
P P ,max .L

t x t u t u t ss u
X K X K X L+ + +≤ ≤

≤ = ≤ <            (4.28) 

Recall that the joint density function of geometric Brownian motion and its 
maximum ( ),t tX M  under P with 0 0 1x M= =  is given by (see [16]) 

( ) ( ) ( )2 2 2 2

23 3

log log2, , exp log
2 22

m x m x
f t x m x t

xm tt
β β

σ σσ

 
 = − + −
 π  

 (4.29) 

for 0 x m< ≤  with = 2rβ σ σ− . 
6) We will discuss the calculation about the local-time term K

u  (see [18] and 
reference therein). Note that  

( ) ( )

( ) ( )
, 0

,0

E e , d

e , dE .

T t ru K
t x x u

T t ru K
x t x u

V t u K X

V t u K X

− − +

− − +

+

= +

∫

∫





               (4.30) 

From the definition of local time  

( ) ( )0 0

1lim I d ,
2

uK
u t s sX K X K X Xξ ξ ξ

ξ +↓= − − < < +∫  , there exists a se-

quence nξ  such that lim 0n nξ→∞ =  and  

( )
0

1lim I d ,
2

u
n n t s n s

n

K X K X Xξ ξ
ξ→∞ +− < < +∫ - .a sP . Using Dominated Con-

vergence Theorem, we get  

( ) ( )

( )

( )

, , 0

2 2
0

2 2
0

1E E lim I d ,
2

1lim E I d
2
1lim d d .

2

uK
t x u t x n t s n sn

n

u
n t s n t sn

n

u K n
XsKn nn

X K X K X X

K X K X s

y f y y s
ξ

ξ

ξ ξ
ξ

ξ ξ σ
ξ

σ
ξ

+→∞

+ +→∞

+

−→∞

= − < < +

 = − < < + 

=

∫

∫

∫ ∫



   (4.31) 

The second step is attained by Fubini’s Theorem and Dominated Convergence 
Theorem. By the definition of derivative, the last step in (4.31) equals  
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( ) ( )2 2
, 0

E d .
s

uK
t x u XX K f K sσ= ∫                (4.32) 

The density function ( )
sXf K  is given by  

( )
( )2log 21 ,

sX

K r s
xf K

K s s

σ
φ

σ σ

 − − 
=  

 
 

           (4.33) 

where ( )
2

21 e
2

x

xφ
−

=
π

 is the density function for standard normal distribu-

tion. Therefore, (4.30) can be expressed as  

( ) ( )

( )
( )

, 0

2

0

E e , d

log 2e , d .

T t ru K
t x x u

ruT t
x

V t u K X

K r u
xK V t u K u

u u

σ
σ φ

σ

− − +

−
− +

+

 − − 
= +  

 
 

∫

∫



      (4.34) 

Substituting the result (4.34) into (4.26), we get the early exercise premium 
(EEP) representation for the American knock-out cash-or-nothing put option  

( ) ( ) ( ) ( )

( )
( )

, ,0

2

0

, e E e P d

log 21 e , d ,
2

T tr T t L ru L
t x T t x t u

ruT t
x

V t x G X r X K u

K r u
xK V t u K u

u u

σ
σ φ

σ

−− − −
+

−
− +

= + ≤

 − − 
− +  

 
 

∫

∫
  (4.35) 

where the first and second terms are defined in (4.27) and (4.28). 
The main result of the present subsection may now be stated as follows. Below, 

we will make use of the following function  

( )
( ) ( )( )

( ) ( )( )2

2

2 2 21

log 2
, , ,

log 2
r

z x r v t
J t x v z

v t

zx L r v tL
x v t

σ

σ

σ

σ

σ

−

 − − −
 = Φ
 − 

 − − −   − Φ   −   

     (4.36) 

for all [ )0, , 0, 0t T x z∈ > >  and ( ),v t T∈ . 
Theorem 1. The arbitrage-free price of the American knock-out cash-or- 

nothing put option follows the early-exercise premium representation  

( ) ( ) ( ) ( ) ( )

( )

( )
( )( )

,

2

, e E e , , , d

log 21 e , d
2

Tr T t r v tL
t x T t

r u t
T

xt

V t x G X r J t x v K v

K r u t
xK V u K u

u t u t

σ
σ φ

σ

− − − −

− −
+

= +

 − − − 
−  

− − 
 

∫

∫
 (4.37) 

for all ( ) [ ] ( ), 0, 0,t x T L∈ × , where the first term is the arbitrage-free price of the 
European knock-out cash-or-nothing put option and the second and third terms 
are the early-exercise premium.  

The proof is straightforward following the points 4, 5 and 6 stated above. Note 
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that our problem is based on the stopped process LX  instead of the original 
process X and that the value of ( ),xV u K +  in (4.37) needs to be estimated by fi-
nite difference method otherwise we can not get the value ( ),V t x . 

The cash-or-nothing call option can be handled in a similar way. The different 
part is the European value function in (4.27). The arbitrage-free price of the Eu-
ropean down-out cash-or-nothing call option CNC

EV  at the point ( ),t x  is given 
by (see [6])  

( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

2

2 2 21
2

log 2
, e

log 2
e .

r T tCNC
E

r

r T t

x K r T t
V t x

T t

L xK r T tL
x T t

σ

σ

σ

σ

σ

− −

−
− −

 + − −
 = Φ
 − 

 + − −   − Φ   −   

  (4.38) 

4.2. The American Knock-Out Asset-Or-Nothing Options 

The arbitrage-free price of the European knock-out asset-or-nothing option EV  
at the point ( ),t x  can be written explicitly as (see [6])  

( )
( ) ( )( )

( ) ( )( )2

2

2 2 21

log 2
,

log 2

ANC
E

r

x K r T t
V t x x

T t

L xK r T tL
x T t

σ

σ

σ

σ

σ

+

 + + −
 = Φ
 − 

 + + −   − Φ   −   

     (4.39) 

( )
( ) ( )( )

( ) ( )( )2

2

2 2 21

log 2
,

log 2
,

ANP
E

r

K x r T t
V t x x

T t

xK L r T tL
x T t

σ

σ

σ

σ

σ

+

 − + −
 = Φ
 − 

 − + −   − Φ   −   

     (4.40) 

where ( ),ANC
EV t x  represents the value for the European down-out asset-or- 

nothing call (ANC) option and ( ),ANP
EV t x  for the up-out put. 

Theorem 2. The arbitrage-free price of the American knock-out asset-or-nothing 
option follows the early-exercise premium representation  

( ) ( ) ( ) ( )( ) ( ), 0

1, e E E e 1 , d
2

T tr T tANC L ru K
t x T x uV t x G X V t u K X

−− − − −= − − +∫    (4.41) 

for all ( ) [ ] ( ), 0, ,t x T L K∈ × , and 

( ) ( ) ( ) ( )( ) ( ), 0

1, e E E e , 1 d
2

T tr T tANP L ru K
t x T x uV t x G X V t u K X

−− − − += − + −∫    (4.42) 

for all ( ) [ ] ( ), 0, ,t x T K L∈ × , where the first term is the arbitrage-free price of 
the European knock-out asset-or-nothing option and the second term is the ear-
ly-exercise premium.  

Proof. The proof is analogous to that of Theorem 1. Back to (4.22), it is easy to 
verify that the value of H vanishes since V G=  in the stopping set. There are 
only two terms in (4.26).  
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5. Financial Analysis of the American Barrier Binary Options 

The payment of the American barrier binary options is binary, so they are not 
ideal hedging instruments. Instead, they are ideal investment products. It is popu-
lar to use structured accrual range notes in the financial markets. Such notes are 
related to foreign exchanges, equities or commodities. For instance, in a daily 
accrual USD-BRP exchange rate range note, it pays a fixed daily accrual interest 
if the exchange rate remains within a certain range.  

Generally, an investor buying a barrier option is seeking for more risk than 
that of a vanilla option since the barrier options can be stopped or “knocked-out” 
at any time prior to maturity or never start or “knock-in” due to not hitting the 
barrier. Basic reasons to purchase barrier options rather than standard options 
include a better expectation of the future behaviour of the market, hedging needs 
and lower premiums. In the liquid market, traders value options by calculating 
the expected value of the pay-offs based on all stock scenarios. It means to some 
extent we pay for the volatility around the forward price. However, barrier op-
tions eliminate paying for the impossible scenarios from our point of view. On 
the other hand, we can improve our return by selling a barrier option that pays 
off based on scenarios we think of little probability. Let us imagine that the 
1-year forward price of the stock is 110 and the spot price is 100. We believe that 
the market is very likely to rise and if it drops below 95, it will decline further. 
We can buy a down-and-out call option with strike price 110 and the barrier 
level 95. At any time, if the stock falls below 95, the option is knocked-out. In 
this way, we do not pay for the scenario that the stock price drops firstly and 
then goes up again. This reduces the premium. For the hedgers, barrier options 
meet their needs more closely. Suppose we own a stock with spot 100 and decide 
to sell it at 105. We also want to get protected if the stock price falls below 95. 
We can buy a put option struck at 95 to hedge it but it is more inexpensive to 
buy an up-an-out put with a strike price 95 and barrier 105. Once the stock price 
rises to 105 when we can sell it and this put disappears simultaneously.  

The relationship between knock-in option, knock-out option and knock-less 
option (standard option) of the same type (call or put) with the same expiration 
date, strike and barrier level can be expressed as  

knock-out knock-in knock-less.+ =                 (5.1) 

This relationship only holds for the European barrier options. It has not been 
obtained for the American version when we get the American values from the 
sections above. 

We plot the value of the American barrier binary options using the free-boundary 
structure in the above sections. Note that the value of ( ),xV u K +  in Equations 
(4.37), (4.41) and (4.42) separately is estimated by finite difference method (see 
[19]). 

The American value curves in Figure 3 and Figure 4 are simulated from (15) 
by inserting different American binary option values. Figure 3 shows that the 
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value of the American down-in cash-or-nothing call options (asset-or-nothing 
call option follows a similar curve) increases with stock price tX  before the in 
barrier and then decreases due to the uncertainty of knock-in. Figure 4 shows 
the value of the American up-in cash-or-nothing put option (asset-or-nothing 
put is similar ). As we can see before the barrier, the option value is increasing 
and gets its peak at the barrier. Then the value goes down as the stock price con-
tinues to go up after the barrier level. Generally, the price of the American ver-
sion options is larger than the European version.  

Figures 5-8 show the values for the knock-out binary options. Figure 5 illu-
strates that the value of the up-out cash-or-nothing put option is a decreasing 
function of the stock price below the barrier. However, in Figure 6 the up-out 
asset-or-nothing put first goes up and then down to the barrier. We can see the 
value of the down-out cash-or-nothing call option in Figure 7 is strictly increasing 
as the asset price above the barrier. The asset-or-nothing call value in Figure 8 is 
also in the similar situation but with different amount of payoff size. All of the 
out figures show that the smooth-fit condition is not satisfied at the stopping 
boundary K. 
 

 
Figure 3. A computer comparison for the values of the European and the American 
down-in cash-or-nothing call options with parameters  

0.1, 0.4, 10, 1, 6r K T Barrierσ= = = = =  and 0t = . 

 

 
Figure 4. A computer comparison for the values of the European and the American up-in 
cash-or-nothing put options with parameters 0.1, 0.4, 10, 1, 15r K T Barrierσ= = = = =  
and 0t = . 
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Figure 5. A computer comparison for the values of the European and the American 
up-out cash-or-nothing put options with parameters  

0.05, 0.1, 10, 1, 15r K T Lσ= = = = =  and 0t = . 
 

 
Figure 6. A computer comparison for the values of the European and the American 
up-out asset-or-nothing put options with parameters  

0.05, 0.1, 10, 1, 15r K T Lσ= = = = =  and 0t = . 
 

 
Figure 7. A computer comparison for the values of the European and the American 
down-out cash-or-nothing call options with parameters  

0.05, 0.1, 10, 1, 6r K T Lσ= = = = =  and 0t = . 
 

The results of this paper also hold for an underlying asset with dividend struc-
ture. With minor modifications, the formulas developed here can be applied to 
handle those problems. 
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Figure 8. A computer comparison for the values of the European and the American 
down-out asset-or-nothing call options with parameters  

0.05, 0.1, 10, 1, 6r K T Lσ= = = = =  and 0t = . 
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