

Graphs with Pendant Vertices and $r(G) \le 7$

Haicheng Ma*, Shang Gao, Danyang Li

Department of Mathematics, Qinghai Nationalities University Xining, Qinghai, China Email: *qhmymhc@163.com

How to cite this paper: Ma, H.C., Gao, S. and Li, D.Y. (2020) Graphs with Pendant Vertices and $r(G) \le 7$. *Journal of Applied Mathematics and Physics*, **8**, 240-246. https://doi.org/10.4236/jamp.2020.82019

Received: January 6, 2020 Accepted: January 19, 2020 Published: January 22, 2020

Copyright © 2020 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

Abstract

Let *G* be a graph of order *n* with vertex set $V(G) = \{v_1, v_2, \dots, v_n\}$. the adjacency matrix of *G* is an $n \times n$ matrix $A(G) = (a_{ij})_{n \times n}$, where a_{ij} is the number edges joining v_i and v_j in *G*. The eigenvalues $\lambda_1, \lambda_2, \lambda_3, \dots, \lambda_n$ of A(G) are said to be the eigenvalues of the graph *G* and to form the spectrum of this graph. The number of nonzero eigenvalues and zero eigenvalues in the spectrum of *G* are called rank and nullity of the graph *G*, and are denoted by r(G) and $\eta(G)$, respectively. It follows from the definitions that $r(G) + \eta(G) = n$. In this paper, by using the operation of multiplication of vertices, a characterization for graph *G* with pendant vertices and r(G) = 7 is shown, and then a characterization for graph *G* with pendant vertices and r(G) less than or equal to 7 is shown.

Keywords

Adjacency Matrix, Rank, Nullity, Multiplication of Vertices

1. Introduction

This paper considers only finite undirected simple graphs. Let G be a graph with order *n*, its the adjacency matrix is defined as follows: $A(G) = (a_{ij})_{max}$

$$a_{ij} = \begin{cases} 1 & \text{if } i \sim j, \\ 0 & \text{others.} \end{cases}$$

Obviously, A(G) is a real symmetric matrix in which all diagonal elements are 0 and all other elements are 0 or 1, its eigenvalues are all real numbers. The *n* eigenvalues of A(G) are said to be the eigenvalues of the graph *G* and to form the spectrum of this graph. The number of nonzero and the number of zero eigenvalues in the spectrum of *G* are called rank and nullity of the graph *G*, and are denoted by r(G) and $\eta(G)$ respectively. Obviously $r(G) + \eta(G) = n$. There have been diverse studies on the nullity of a graph [1]-[12], it is related to the stability of molecular represented by the graph. However, there is very little literature on the rank of a graph. It is known that r(G) = 0 if and only if *G* is an empty graph without edges. Obviously, there is no graph *G* where r(G)=1. In [1] [13], graph *G* is characterized where r(G)=2,3. In [2] [14], graph *G* is characterized where r(G)=4. In [15], graph *G* is characterized where

r(G) = 5. In this paper, by using the operation of multiplication of vertices, a characterization for graph G with pendant vertices and r(G) = 7 is shown, and then a characterization for graph G with pendant vertices and r(G) less than or equal to 7 is shown.

This paper is organized as follows: In Section 2, some necessary lemmas are given, in Section 3, a characterization for graph G with pendant vertices and r(G) = 7 is shown, and then a characterization for graph G with pendant vertices and $r(G) \le 7$ is shown.

Let G be a graph, for a vertex $x \in V(G)$, define $N_G(x)$ to be the neighborhood of vertex x in G. A vertex subset $I \subseteq V(G)$ of a graph G is an independent set of G if G[I], the subgraph induced by I, is edgeless. Now let us introduce a graph operation. Let $V(G) = \{v_1, v_2, \dots, v_n\}$, and $m = (m_1, m_2, \dots, m_n)$ be a vector of positive integers. Denote by $G \circ m$ the graph obtained from G by replacing each vertex v_i of G with an independent set of m_i vertices

 $\{v_i^1, v_i^2, \dots, v_i^{m_i}\}$ and joining v_i^s with v_j^t if and only if v_i and v_j are adjacent in *G*. The resulting graph $G \circ m$ is said to be obtained from *G* by multiplication of vertices. Let Λ be the set of some graphs, we denote by $\mathcal{M}(\Lambda)$ class of all graphs that can be constructed from one of the graphs in Λ by multiplication of vertices. K_n denotes the complete graph on *n* vertices. Undefined concepts and notations will follow [16].

2. Some Lemmas

Lemma 2.1. [1]

1) Let H_1 and H_2 be two graphs, if $G = H_1 \bigcup H_2$, then

 $r(G) = r(H_1) + r(H_2).$

2) Let *H* be a vertex-induced subgraph of *G*, then $r(H) \le r(G)$.

Lemma 2.2. [14] Let *G* and *H* be two graphs, if $G \in \mathcal{M}(H)$, then

r(H) = r(G).

Lemma 2.2 indicates that multiplication of vertices does not change the rank of the graph. A graph is called a basic graph if it has no isolated vertices and can not be obtained from other graphs by multiplication of vertices. Otherwise, it is not a basic graph. Hence, a graph with no isolated vertices is not a basic graph if and only if it has two vertices which have the same neighborhoods. According to the lemma 2.2, to characterize a graph of rank k, we only need to characterize all the basic graphs of rank k. In [1] [13], they characterized that the connected basic graph of rank 2 is K_2 and the connected basic graph of rank 3 is K_3 . For convenience, let's say $\Lambda_2 = \{K_2\}$, $\Lambda_3 = \{K_3\}$; In [2] [14], they characterized all

connected basic graphs of rank 4 (as shown in Figure 1).

Lemma 2.3. [14] Let G be a graph without isolated vertices, then r(G) = 4 if and only if $G \in \mathcal{M}(\Lambda_4)$, where $\Lambda_4 = \{H_1, H_2, \dots, H_9\}$, every H_i $(i = 1, 2, \dots, 9)$ is shown in **Figure 1**.

Lemma 2.4. [15] Let G be a graph without isolated vertices, then r(G) = 5 if and only if $G \in \mathcal{M}(\Lambda_5)$, where $\Lambda_5 = \{G_1, G_2, \dots, G_{25}\}$, every G_i $(i = 1, 2, \dots, 25)$ is shown in **Figure 2** and **Figure 3**.

Lemma 2.5. [12] Let *G* be a graph with a pendant vertex, and let *H* be the induced subgraph of *G* obtained by deleting the pendant vertex together with the vertex adjacent to it. Then $\eta(G) = \eta(H)$, equivalently r(G) = r(H) + 2.

3. Main Conclusions

Let *H* be a graph with $V(H) = \{v_1, v_2, \dots, v_n\}$, and $m = (m_1, m_2, \dots, m_n)$ is a vector with $m_i = 1$ or 2, $(i = 1, 2, \dots, n)$. Then V(H) can be divided into two sets: $V_1 = \{v_i \in V(H) | m_i = 1\}$ and $V_2 = \{v_i \in V(H) | m_i = 2\}$. Let v_i^1 and v_i^2 be the vertices in $H \circ m$ by multiplying the vertex v_i in *H* when $m_i = 2$. For a subset $U \subseteq V_1$, we construct a graph $(H \circ m)^U$ as follows:

$$V((H \circ m)^U) = \{x, y\} \bigcup V(H \circ m)$$
$$E((H \circ m)^U) = \{xy\} \bigcup \{yv_i^1 \mid \forall i, m_i = 2\} \bigcup \{yv_i \mid v_i \in U\} \bigcup E(H \circ m)$$

Figure 1. The basic graphs of rank 4.

Figure 2. The graphs with exactly 5 vertices and rank 5.

Figure 3. The basic graphs with more than 5 vertices and rank 5.

By the definition, $(H \circ m)^U$ has a pendant vertex *x*. Lemma 3.1. If *H* is a basic graph, then $(H \circ m)^U$ is also a basic graph. Proof. For any $i, j \in \{1, 2, \dots, n\}$, if $i \neq j$, as *H* is a basic graph, then $N_H(v_i) \neq N_H(v_j)$. by the definition of the graph $(H \circ m)^U$, we have $N_{(H \circ m)^U}(v_i^s) = N_H(v_i)$ or $N_H(v_i) \cup \{y\}$, either way, we have $N_{(H \circ m)^U}(v_i^s) \neq N_{(H \circ m)^U}(v_j^t)$ $(1 \leq s \leq m_i, 1 \leq t \leq m_j)$. If i = j and $m_i = 2$, by the construction of the graph $(H \circ m)^U$, we have $y \in N_{(H \circ m)^U}(v_i^1)$ and $y \notin N_{(H \circ m)^U}(v_i^2)$; $x \in N_{(H \circ m)^U}(y)$ and $x \notin N_{(H \circ m)^U}(v)$ for all $v(\neq y) \in V((H \circ m)^U)$; $N_{(H \circ m)^U}(x) = \{y\}$ and $N_{(H \circ m)^U}(v) \neq \{y\}$ for all $v(\neq x) \in V((H \circ m)^U)$ (because *H* has no isolated vertices). In a word, any two vertices in $(H \circ m)^U$ don't have the same neighborhoods. Therefore, $(H \circ m)^U$

For the convenience of drawing, when $m_i = 2$, we use a hollow circle to indicate two vertices v_i^1 and v_i^2 , which have the same neighborhoods in $H \circ m$, the vertex y is adjacent to v_i^1 but not adjacent to v_i^2 , and we use a black dot to indicate exactly one vertex. For example, the graph $(H \circ m)^U$ is depicted in **Figure** 4, where $H = C_5$, $V(H) = \{v_1, v_2, v_3, v_4, v_5\}$, m = (2, 2, 1, 1, 1) and $U = \{v_3, v_4\}$.

Since there are multiple choices for the vector m and the subset U, there are also multiple choices for the graph $(H \circ m)^U$, represented by $\mathcal{B}(H)$ as the set of all graphs $(H \circ m)^U$.

Theorem 1. Let G be a graph without isolated vertices but with pendant vertices,

Figure 4. The graph $(C_5 \circ m)^U$ where $m = (2, 2, 1, 1, 1), U = \{v_3, v_4\}$.

r(G) = 7 if and only if $G \in \mathcal{M}(\Omega_5)$, where $\Omega_5 = \bigcup_{H \in \Lambda_5} \mathcal{B}(H)$, Λ_5 is the same thing as Lemma 2.4.

Proof. Without loss of generality, we assume that *G* is a basic graph. Let *H* be the induced subgraph of *G* obtained by deleting the pendant vertex *x* together with the vertex *y* adjacent to it. By Lemma 2.5, we have r(H) = 5. Furthermore, *H* does not have isolated vertices (if not, then the *G* contains at least an isolated vertex or two pendant vertices all adjacent to *y*, so *G* is not a connected graph, or *G* is not a basic graph, which is a contradiction). Then by Lemma 2.4,

 $H \in \mathcal{M}(\Lambda_5)$. Let $H = K \circ m$, where $m = (m_1, m_2, \dots, m_n)$ is a vector of positive integers, and $K \in \Lambda_5$. If $m_i \ge 3$, then there exists $s, t \in \{1, 2, \dots, m_i\}$ such that $N_G(v_i^s) = N_G(v_i^t)$ (since $N_G(v_i^s) = N_H(v_i)$ or $N_H(v_i) \cup \{y\}$). If $m_i = 2$, v_i^1 and v_i^2 are all adjacent to y or none are adjacent to y, then $N_G(v_i^1) = N_G(v_i^2)$, However, G is a basic graph, this is a contradiction. So $m_i \le 2$, one and only one of the two vertices v_i^1 and v_i^2 is adjacent to y when $m_i = 2$. Therefore, we conclude that $G \in \bigcup_{H \in \Lambda_5} \mathcal{B}(H)$.

A graph *G* is called a basic extremal graph of rank *k*. Let it be a basic graph of rank *k*, and it is not a proper vertex-induced subgraph of any basic graphs of rank *k*. When we study the graph of rank *k*, we just need to find out the basic extremal graph of rank *k*. Obviously, K_2 is a basic extremal graph of rank 2, let's say $\Gamma_2 = \{K_2\}$. K_3 is a basic extremal graph of rank 3, let's say $\Gamma_3 = \{K_3\}$. H_6, H_7 and H_8 (as shown in **Figure 1**) are basic extremal graphs of rank 4, let's say $\Gamma_4 = \{H_6, H_7, H_8\}$. G_1 , G_2 , G_3 , G_{11} , G_{13} , G_{17} , G_{19} and G_{24} (as shown in **Figure 2**) are basic extremal graphs of rank 5, let's say

$$\Gamma_5 = \left\{ G_1, G_2, G_3, G_{11}, G_{13}, G_{17}, G_{19}, G_{24} \right\}.$$

Obviously, in Γ_i (i = 2, 3, 4), every graph is the vertex-induced subgraph of a certain graph in Γ_5 .

Let *H* be a a basic graph of rank 5, then all graphs in the set $\mathcal{B}(H)$ are basic graphs with pendant vertices and r(G) = 7. Let $(H \circ m)^U \in \mathcal{B}(H)$,

 $m = (m_1, m_2, \dots, m_n)$, and every vector $m_i = 1$ or 2 ($i = 1, 2, \dots, n$). If some vectors $m_i \neq 2$, then $(H \circ m)^U$ can't be a basic extremal graph of rank 7, because it is a proper vertex-induced subgraph of $(H \circ m')^{\varnothing}$, where $m' = (2, 2, \dots, 2)$ and \varnothing is empty set. Particularly, let's say $(H \circ m')^{\varnothing} = \mathbb{H}$. Easy to prove, if *H* is

a basic extremal graph of rank 5, then \mathbb{H} is a basic extremal graph with pendant vertices and r(G) = 7. Hence we have the following theorem.

Theorem 2. Let *G* be a graph without isolated vertices but with pendant vertices, then $r(G) \leq 7$ if and only if $G \in \mathcal{M}(\Delta)$, where Δ is the set of all vertex-induced subgraphs of graphs in set $\Theta = \{\mathbb{H} \mid H \in \Gamma_5\}$.

Proof. By $H \in \Gamma_5$, we know the rank of H is 5. By the definition of \mathbb{H} and lemma 2.5, we know its rank is 7. Hence the rank of every graph is less than or equal to 7 in set Δ . On the contrary, let G be a graph without isolated vertices but with pendant vertices, and $r(G) = k \leq 7$. Similar to the proof of theorem 1, we have $G \in \mathcal{M}(\Omega_{k-2})$, where $\Omega_{k-2} = \bigcup_{H \in \Lambda_{k-2}} \mathcal{B}(H)$. Because every graph in Λ_{k-2} is the vertex-induced subgraph of a certain graph in Γ_{k-2} , and every

graph in $\Gamma_{k-2}(k = 4, 5, 6, 7)$ is the vertex-induced subgraph of a certain graph in Γ_5 . On the other hand, every graph in $\mathcal{B}(H)$ is the vertex-induced subgraph of \mathbb{H} . So $G \in \mathcal{M}(\Delta)$.

4. Conclusion

By using the operation of multiplication of vertices, a characterization for graph G with pendant vertices and r(G) = 7 is shown, and then a characterization for graph G with pendant vertices and r(G) less than or equal to 7 is shown.

Acknowledgements

This work is supported by National Natural Science Foundation of China (11561056, 11661066), Natural Science Foundation of Qinghai Province (2016-ZJ-914).

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

- [1] Cheng, B. and Liu. B. (2007) On the Nullity of Graphs. *The Electronic Journal of Linear Algebra*, **16**, 60-67.
- [2] Cheng, B. and Liu, B. (2011) On the Nullity of Tricyclic Graphs. *Linear Algebra and Its Applications*, 434, 1799-1810. <u>https://doi.org/10.1016/j.laa.2011.01.006</u>
- Collatz, L. and Sinogowitz, U. (1957) Spektren endlicher Grafen. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 21, 63-77. https://doi.org/10.1007/BF02941924
- [4] Fan, Y. and Qian, K. (2009) On the Nullity of Bipartite Graphs. *Linear Algebra and Its Applications*, 430, 2943-2949. https://doi.org/10.1016/j.laa.2009.01.007
- [5] Fiorini, S., Gutman, I. and Sciriha, I. (2005) Trees with Maximum Nullity. *Linear Algebra and Its Applications*, **397**, 245-251. <u>https://doi.org/10.1016/j.laa.2004.10.024</u>
- [6] Gong, S., Fan, Y. and Yin, Z. (2010) On the Nullity of Graphs with Pendant Trees. *Linear Algebra and Its Applications*, 433, 1374-1380. <u>https://doi.org/10.1016/j.laa.2010.05.016</u>
- [7] Hu, S., Liu, B. and Tan, X. (2008) On the Nullity of Bicyclic Graphs. Linear Algebra

and Its Applications, 429, 1387-1391. https://doi.org/10.1016/j.laa.2007.12.007

- [8] Li, S. (2008) On the Nullity of Graphs with Pendant Vertices. *Linear Algebra and Its Applications*, 429, 1619-1628. <u>https://doi.org/10.1016/j.laa.2008.04.037</u>
- [9] Nath, M. and Sarma, B. (2007) On the Null-Spaces of Acyclic and Unicyclic Singular Graphs. *Linear Algebra and Its Applications*, 427, 42-54. https://doi.org/10.1016/j.laa.2007.06.017
- [10] Sciriha, I. (1998) On the Construction of Graphs of Nullity One. *Discrete Mathematics*, 181, 193-211. <u>https://doi.org/10.1016/S0012-365X(97)00036-8</u>
- Sciriha, I. and Gutman, I. (2001) On the Nullity of line Graphs of Trees. *Discrete Mathematics*, 232, 35-45. <u>https://doi.org/10.1016/S0012-365X(00)00187-4</u>
- [12] Tang, X. and Liu, B. (2005) On the Nullity of Unicyclic Graphs. *Linear Algebra and Its Applications*, 408, 212-220. <u>https://doi.org/10.1016/j.laa.2005.06.012</u>
- [13] Sciriha, I. (1999) On the Rank of Graphs. In: Alavi, Y., Lick, D. and Schwenk, A., Eds., *Combinatorics, Graph Theory, and Algorithms*, Volume II, New Issue Press, Western Michigan University, Kalamazoo, MI, 769-778.
- Chang, G., Huang, L. and Yeh, H. (2011) A Characterization of Graphs with Rank 4. *Linear Algebra and Its Applications*, 434, 1793-1798. https://doi.org/10.1016/j.laa.2010.09.040
- [15] Chang, G., Huang, L. and Yeh, H. (2012) A Characterization of Graphs with Rank 5. Linear Algebra and Its Applications, 436, 4241-4250. https://doi.org/10.1016/j.laa.2012.01.021
- [16] Cvetković, D., Doob, M. and Sachs, H. (1980) Spectra of Graphs-Theory and Application. Academic Press, New York.